Skip to main content

Handling Concept Drift

  • Chapter
  • First Online:
Learning from Data Streams in Dynamic Environments

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

In this chapter, the different methods and techniques used to learn from data streams in evolving and nonstationary environments will be presented, and their performances will be compared according to the generated drift characteristics as well as to the application context and objectives. The goal is to define the criteria to be used in order to help readers to efficiently design the suitable learning scheme for a particular application. For this aim, these methods and techniques are classified and compared according to a set of meaningful criteria. Several examples will be used to illustrate and discuss the principal and the performance of these methods and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaker A, Lughofer E (2014) Self-adaptive and local strategies for a smooth treatment of drifts in data streams. Evol Syst 5(4):239–257

    Article  Google Scholar 

  2. Minku LL, White AP, Yao X (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742

    Article  Google Scholar 

  3. Khamassi I, Sayed-Mouchaweh M, Hammami M, Ghédira K (2015) Self-adaptive windowing approach for handling complex concept drift. Cogn Comput 2015:1–19

    Google Scholar 

  4. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv (CSUR) 46(4):44

    Article  MATH  Google Scholar 

  5. Vachtsevanos G, Lewis FL, Roemer M, Hess A, Wu B (2006) Intelligent fault diagnosis and prognosis for engineering systems. Wiley, New York, NY

    Book  Google Scholar 

  6. Nishida K, Yamauchi K (2007) Detecting concept drift using statistical testing. In: Corruble V, Takeda M, Suzuki E (eds) Discovery science. Springer, Berlin, pp 264–269

    Chapter  Google Scholar 

  7. Cieslak DA, Chawla NV (2009) A framework for monitoring classifiers’ performance: when and why failure occurs? Knowl Inf Syst 18(1):83–108

    Article  Google Scholar 

  8. Lichtenwalter RN, Chawla NV (2010) Adaptive methods for classification in arbitrarily imbalanced and drifting data streams. In: Cao L, Huang JH, Bailey J, Koh YS, Luo J (eds) New frontiers in applied data mining. Springer, Berlin, pp 53–75

    Chapter  Google Scholar 

  9. Hoens TR, Polikar R, Chawla NV (2012) Learning from streaming data with concept drift and imbalance: an overview. Prog Artif Intel 1(1):89–101

    Article  Google Scholar 

  10. GonzáLez-Castro V, Alaiz-RodríGuez R, Alegre E (2013) Class distribution estimation based on the Hellinger distance. Inform Sci 218:146–164

    Article  Google Scholar 

  11. Sayed-Mouchaweh M, Billaudel P (2012) Abrupt and drift-like fault diagnosis of concurent discrete event systems. In: Machine learning and applications (ICMLA), 2012 11th international conference, vol 2, Dec 2012. IEEE, pp 434–439

    Google Scholar 

  12. Poggio T, Cauwenberghs G (2001) Incremental and decremental support vector machine learning. Adv Neural Inf Process Syst 13:409

    Google Scholar 

  13. Minku LL, Yao X (2012) DDD: a new ensemble approach for dealing with concept drift. IEEE Trans Knowl Data Eng 24(4):619–633

    Article  Google Scholar 

  14. Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift detection method. In: Fourth international workshop on knowledge discovery from data streams, vol 6, Sept 2006, pp 77–86

    Google Scholar 

  15. Žliobaitė I (2009) Combining time and space similarity for small size learning under concept drift. In: Foundations of intelligent systems. Springer, Berlin, pp 412–421

    Google Scholar 

  16. Kuncheva LI (2009) Using control charts for detecting concept change in streaming data. Bangor University, Bangor

    Google Scholar 

  17. Alippi C (2014) Learning in nonstationary and evolving environments. In: Intelligence for embedded systems. Springer, Berlin, pp 211–247

    Google Scholar 

  18. Tran DH (2013) Automated change detection and reactive clustering in multivariate streaming data. arXiv, preprint arXiv:1311.0505

    Google Scholar 

  19. Tsymbal A, Puuronen S (2000) Bagging and boosting with dynamic integration of classifiers. Data Min Knowl Discov 1910:195–206

    MATH  Google Scholar 

  20. Sobhani P, Beigy H (2011) New drift detection method for data streams. Springer, Berlin, pp 88–97

    Google Scholar 

  21. Gonçalves PM, de Carvalho Santos SG, Barros RS, Vieira DC (2014) A comparative study on concept drift detectors. Expert Syst Appl 41(18):8144–8156

    Article  Google Scholar 

  22. Toubakh H, Sayed-Mouchaweh M (2015) Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines. Evol Syst 6(2):115–129

    Article  Google Scholar 

  23. Cieslak DA, Chawla NV (2009) A framework for monitoring classifiers’ performance: when and why failure occurs? Knowl Inf Syst 18(1):83–108

    Article  Google Scholar 

  24. Pagano C, Granger E, Sabourin R, Marcialis GL, Roli F (2014) Dynamic weighted fusion of adaptive classifier ensembles based on changing data streams. In: Artificial neural networks in pattern recognition. Springer, Berlin, pp 105–116

    Google Scholar 

  25. Hoens TR, Chawla NV, Polikar R (2011) Heuristic updatable weighted random subspaces for non-stationary environments. In: Data mining (ICDM), 2011 I.E. 11th international conference, Dec 2011. IEEE, pp 241–250

    Google Scholar 

  26. Ditzler G, Polikar R (2011) Hellinger distance based drift detection for nonstationary environments. In: Computational intelligence in dynamic and uncertain environments (CIDUE), 2011 I.E. Symposium, Apr 2011. IEEE, pp 41–48

    Google Scholar 

  27. Vorburger P, Bernstein A (2006) Entropy-based detection of real and virtual concept shifts. Working paper – University of Zurich. Department of Informatics, Zurich

    Google Scholar 

  28. Poggio T, Cauwenberghs G (2001) Incremental and decremental support vector machine learning. Adv Neural Inf Process Syst 13:409

    Google Scholar 

  29. Di Marzo Serugendo G, Frei R, McWilliam R, Derrick B, Purvis A, Tiwari A (2013) Self-healing and self-repairing technologies. Int J Adv Manuf Technol 69(5):8

    Google Scholar 

  30. Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J Mach Learn Res 8:2755–2790

    MATH  Google Scholar 

  31. Yang P, Hwayang Y, Zhou BB, Zomaya AY (2010) A review of ensemble methods in bioinformatics. Curr Bioinform 5(4):296–308

    Article  Google Scholar 

  32. Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181–207

    Article  MATH  Google Scholar 

  33. Polikar R, Upda L, Upda SS, Honavar V (2001) Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans Syst Man Cybernet C Appl Rev 31(4):497–508

    Article  Google Scholar 

  34. Brzeziński D, Stefanowski J (2011) Accuracy updated ensemble for data streams with concept drift. In: Corchado E, Kurzynski M, Wozniak M (eds) Hybrid artificial intelligent systems. Springer, Berlin, pp 155–163

    Chapter  Google Scholar 

  35. Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874

    Article  Google Scholar 

  36. Oza NC (2005) Online bagging and boosting. In: Systems, man and cybernetics, 2005 I.E. international conference, vol 3, Oct, 2005. IEEE, pp 2340–2345

    Google Scholar 

  37. Kuncheva LI (2004) Classifier ensembles for changing environments. In: Multiple classifier systems. Springer, Berlin, pp 1–15

    Google Scholar 

  38. Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2009) A multi-partition multi-chunk ensemble technique to classify concept-drifting data streams. In: Advances in knowledge discovery and data mining. Springer, Berlin, pp 363–375

    Google Scholar 

  39. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, Aug 2003. ACM, pp 226–235

    Google Scholar 

  40. BifetA, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: Machine learning and knowledge discovery in databases. Springer, Berlin, pp 135–150

    Google Scholar 

  41. Brzezinski D, Stefanowski J (2014) Combining block-based and online methods in learning ensembles from concept drifting data streams. Inform Sci 265:50–67

    Article  MathSciNet  MATH  Google Scholar 

  42. Jackowski K (2014) Fixed-size ensemble classifier system evolutionarily adapted to a recurring context with an unlimited pool of classifiers. Pattern Anal Appl 17(4):709–724

    Article  MathSciNet  Google Scholar 

  43. Escovedo T, Abs da Cruz A, Koshiyama A, Melo R, Vellasco M (2014) NEVE++: a neuro-evolutionary unlimited ensemble for adaptive learning. In: Neural networks (IJCNN), 2014 international joint conference, July 2014. IEEE, pp 3331–3338

    Google Scholar 

  44. Nishida K, Yamauchi K, Omori T (2005) Ace: adaptive classifiers-ensemble system for concept-drifting environments. In: Multiple classifier systems. Springer, Berlin, pp 176–185

    Google Scholar 

  45. Brzezinski D, Stefanowski J (2014) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans Neural Networks Learn Syst 25(1):81–94

    Article  Google Scholar 

  46. Sobolewski P, Wozniak M (2013) Concept drift detection and model selection with simulated recurrence and ensembles of statistical detectors. J Univ Comput Sci 19(4):462–483

    Google Scholar 

  47. Tran DH (2013) Automated change detection and reactive clustering in multivariate streaming data. arXiv, preprint arXiv:1311.0505.

    Google Scholar 

  48. Ross GJ, Adams NM, Tasoulis DK, Hand DJ (2012) Exponentially weighted moving average charts for detecting concept drift. Pattern Recognit Lett 33(2):191–198

    Article  Google Scholar 

  49. Muthukrishnan S, van den Berg E, Wu Y (2007) Sequential change detection on data streams. In: Data mining workshops, 2007. ICDM workshops 2007. Seventh IEEE international conference, Oct 2007. IEEE, pp 551–550

    Google Scholar 

  50. Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min 2(5‐6):311–327

    Article  MathSciNet  Google Scholar 

  51. Luo Y, Li Z, Wang Z (2009) Adaptive CUSUM control chart with variable sampling intervals. Comput Stat Data Anal 53(7):2693–2701

    Article  MathSciNet  MATH  Google Scholar 

  52. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, June 2002. ACM, pp 1–16

    Google Scholar 

  53. Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101

    Google Scholar 

  54. Kifer D, Ben-David S, Gehrke J (2004) Detecting change in data streams. In: Proceedings of the thirtieth international conference on very large data bases, vol 30, Aug 2004. VLDB Endowment, pp 180–191

    Google Scholar 

  55. Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: SDM, vol 7

    Google Scholar 

  56. Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, Aug 2001. ACM, pp. 97–106

    Google Scholar 

  57. Bach SH, Maloof M (2008) Paired learners for concept drift. In: Data mining, 2008. ICDM'08. Eighth IEEE international conference, Dec 2008. IEEE, pp 23–32

    Google Scholar 

  58. Klingenberg R, Renz I (1998) Adaptive information filtering: learning in the presence of concept drift. In: Proceedings of AAAI/ICML-98 workshop on learning for text categorization, Madison, WI, pp 33–40

    Google Scholar 

  59. Lazarescu M, Venkatesh S, Bui HH (2004) Using multiple windows to track concept drift. Intel Data Anal 8(1):29–60

    Google Scholar 

  60. Koychev I (2000) Gradual forgetting for adaptation to concept drift. In: Proceedings of ECAI 2000 workshop on current issues in spatio-temporal reasoning

    Google Scholar 

  61. Boubacar HA, Lecoeuche S, Maouche S (2005) Audyc neural network using a new gaussian densities merge mechanism. In: Adaptive and natural computing algorithms. Springer, Vienna, pp 155–158

    Google Scholar 

  62. AlZoubi O, Fossati D, D’Mello S, Calvo RA (2014) Affect detection from non-stationary physiological data using ensemble classifiers. Evol Syst 6(2):79–92

    Article  Google Scholar 

  63. Wang S, Minku LL, Yao X (2013) Online class imbalance learning and its applications in fault detection. Int J Comput Intel Appl 12(04):1340001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author

About this chapter

Cite this chapter

Sayed-Mouchaweh, M. (2016). Handling Concept Drift. In: Learning from Data Streams in Dynamic Environments. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25667-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25667-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25665-8

  • Online ISBN: 978-3-319-25667-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics