Skip to main content

Learning in Dynamic Environments

  • Chapter
  • First Online:
Learning from Data Streams in Dynamic Environments

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

In this chapter, the problem of drifting data streams in dynamic environments is formalized, and its framework is defined. Then, the kinds and characteristics of the concept drift are presented. Finally, the real-world applications generating drifting data streams are discussed. The goal is to give a picture of the problem of learning from data streams in dynamic environments, its causes, sources, and characteristics in order to discuss later alternatives to solve this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng K, Dong ZY, Wong KP (2009) Self-adaptive radial basis function neural network for short-term electricity price forecasting. Gener Transm Dis IET 3(4):325–335

    Article  Google Scholar 

  2. Navarro-Gonzalez JL, Lopez-Juarez I, Ordaz-Hernandez K, Rios-Cabrera R (2015) On-line incremental learning for unknown conditions during assembly operations with industrial robots. Evol Syst 6(2):101–114

    Article  Google Scholar 

  3. Furao S, Hasegawa O (2006) An incremental network for on-line unsupervised classification and topology learning. Neural Netw 19(1):90–106

    Article  MATH  Google Scholar 

  4. Sayed-Mouchaweh M, Devillez A, Lecolier GV, Billaudel P (2002) Incremental learning in fuzzy pattern matching. Fuzzy Set Syst 132(1):49–62

    Article  MathSciNet  MATH  Google Scholar 

  5. Shaker A, Lughofer E (2014) Self-adaptive and local strategies for a smooth treatment of drifts in data streams. Evol Syst 5(4):239–257

    Article  Google Scholar 

  6. He H (2011) Self-adaptive systems for machine intelligence. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  7. Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl Soft Comput 11(2):2057–2068

    Article  Google Scholar 

  8. Lughofer E, Sayed-Mouchaweh M (2015) Autonomous data stream clustering implementing split-and-merge concepts – towards a plug-and-play approach. Inform Sci 304:54–79

    Article  Google Scholar 

  9. Lazarescu M, Venkatesh S, Bui HH (2004) Using multiple windows to track concept drift. Intell Data Anal 8(1):29–60

    Google Scholar 

  10. Minku LL, White AP, Yao X (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742

    Article  Google Scholar 

  11. Žliobaitė I (2010) Learning under concept drift: an overview. arXiv, preprint arXiv:1010.4784

    Google Scholar 

  12. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv (CSUR) 46(4):44

    Article  MATH  Google Scholar 

  13. Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Networks 51(12):3448–3470

    Article  Google Scholar 

  14. Crespo F, Weber R (2005) A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Set Syst 150(2):267–284

    Article  MathSciNet  MATH  Google Scholar 

  15. Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap 12(4):331–370

    Article  MATH  Google Scholar 

  16. Gauch S, Speretta M, Chandramouli A, Micarelli A (2007) User profiles for personalized information access. In: Brusilvosky P, Kobsa A, Nejdl W (eds) The adaptive web. Springer, Berlin, pp 54–89

    Chapter  Google Scholar 

  17. Fdez-Riverola F, Iglesias EL, Díaz F, Méndez JR, Corchado JM (2007) Applying lazy learning algorithms to tackle concept drift in spam filtering. Expert Syst Appl 33(1):36–48

    Article  Google Scholar 

  18. Thomas LC (2009) Modelling the credit risk for portfolios of consumer loans: analogies with corporate loan models. Math Comput Simulat 79(8):2525–2534

    Article  MathSciNet  MATH  Google Scholar 

  19. Armstrong JS, Morwitz VG, Kumar V (2000) Sales forecasts for existing consumer products and services: do purchase intentions contribute to accuracy? Int J Forecast 16(3):383–397

    Article  Google Scholar 

  20. Procopio MJ, Mulligan J, Grudic G (2009) Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments. J Field Robot 26(2):145–175

    Article  Google Scholar 

  21. Rashidi P, Cook DJ (2009) Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans Syst Man Cybernet A Syst Hum 39(5):949–959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author

About this chapter

Cite this chapter

Sayed-Mouchaweh, M. (2016). Learning in Dynamic Environments. In: Learning from Data Streams in Dynamic Environments. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25667-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25667-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25665-8

  • Online ISBN: 978-3-319-25667-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics