Skip to main content

From Cluster-Based Outlier Detection to Time Series Discord Discovery

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9441))

Abstract

Anomalous patterns or discords are just the kind of outliers in time series. In this paper, we present a new approach for time series discord discovery which is based on cluster-based outlier detection. In this approach, first, subsequence candidates are extracted from the time series using a segmentation method, then these candidates are transformed into the same length and are input for an appropriate clustering algorithm, and finally, we identify discords by using a measure suggested in the cluster-based outlier detection method given by He et al. 2003. The experimental results show that our approach is much more efficient than the HOTSAX algorithm in detecting time series discords while the anomalous patterns discovered by the two methods perfectly match with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bu, Y., Leung, T.W., Fu, A., Keogh, E., Pei, J., Meshkin, S.: WAT: finding Top-K discords in time series database. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM 2007), Minneapolis, MN, USA (26–28 April 2007)

    Google Scholar 

  2. Chuah, M.C., Fu, F.: ECG anomaly detection via time series analysis. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.) ISPA Workshops 2007. LNCS, vol. 4743, pp. 123–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Duan, L.D., Xu, L., Guo, F., Lee, J., Yan, B.: A local density based spatial clustering with noise. Inf. Syst. 32(7), 978–986 (2007)

    Article  Google Scholar 

  4. Duan, L.D., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168, 151–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noises. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)

    Google Scholar 

  6. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Tiwary, A., Franklin, M. (eds.) Proceedings of 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, pp. 73–84 (01–04 June 1998)

    Google Scholar 

  7. Gruber, C., Coduro, M., Sick, B.: Signature verification with dynamic RBF network and time series motifs. In: Proceedings of 10th International Workshop on Frontiers in Handwriting Recognition (2006)

    Google Scholar 

  8. He, Z., Xu, X., Deng, S.: Squeezer: an efficient algorithm for clustering categorical data. J. Comput. Sci. Technol. 17(5), 611–624 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  10. Hawkins, D.: Identification of Outliers. Chapman and Hall, London (1980)

    Book  MATH  Google Scholar 

  11. Jiang, M.F., Tseng, S.S., Su, C.M.: Two phase clustering process for outlier detection. Pattern Recogn. Lett. 22(6–7), 691–700 (2001)

    Article  MATH  Google Scholar 

  12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality deduction for fast similarity search in large time series database. J. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  MATH  Google Scholar 

  13. Keogh, E., Lonardi, S., Chiu, B.: Finding surprising patterns in a time series database in linear time and space. In: KDD 2002: Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 550–556 (2002)

    Google Scholar 

  14. Keogh, E., Lin, J. and Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of 5th IEEE International Conference on Data Mining (ICDM), pp. 226–233 (2005)

    Google Scholar 

  15. Keogh E., Xi X., Wei L., Ratanamahatana C.A.: The UCR time series classification/clustering homepage (2013). www.cs.ucr.edu/~eamonn/time_series_data

  16. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discover (DMKD 2003), pp. 2–11 (13 June 2003)

    Google Scholar 

  17. Ma, J., Perkins, S.: Online novelty detection on temporal sequences. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, NY, USA, pp. 614–618. ACM Press (2003)

    Google Scholar 

  18. Oliveira, A.L.I., Neto, F.B.L., Meira, S.R.L.: A method based on RBF-DAA neural network for improving novelty detection in time series. In: Proceedings of 17th International FLAIRS Conference, AAAI Press, Miami Beach, Florida, USA (2004)

    Google Scholar 

  19. Pratt, K.B., Fink, E.: Search for pattern in compressed time series. Int. J. Image Graph. 2(1), 89–106 (2002)

    Article  Google Scholar 

  20. Truong, C.D., Anh, D.T.: An efficient method for discovering motifs in large time series. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part I. LNCS, vol. 7802, pp. 135–145. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, pp. 103–114 (04–06 June 1996)

    Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Eamonn Keogh for his kindly providing all the test datasets used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Tuan Anh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kha, N.H., Anh, D.T. (2015). From Cluster-Based Outlier Detection to Time Series Discord Discovery. In: Li, XL., Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D. (eds) Trends and Applications in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science(), vol 9441. Springer, Cham. https://doi.org/10.1007/978-3-319-25660-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25660-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25659-7

  • Online ISBN: 978-3-319-25660-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics