Skip to main content

Accelerator Mass Spectrometry of Radiocarbon

  • Chapter
  • First Online:
  • 1806 Accesses

Abstract

This chapter presents an overview of the technology for measuring radiocarbon (14C) by accelerator mass spectrometry (AMS), which counts individual 14C atoms. The major components of a 14C AMS system are described in relation to the basic principles and challenges for measuring 14C. This chapter concludes with a review of various AMS instruments used to measure 14C.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, K.W. 1987. Ultra high sensitivity mass spectrometry with accelerators. London, England: Royal Society Carlton House Terrace.

    Google Scholar 

  • Bonani, G., P. Eberhardt, H.J. Hofmann, T.R. Niklaus, M. Suter, H.A. Synal, and W. Wolfli. 1990. Efficiency improvements with a new stripper design. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 52: 338–344.

    Article  Google Scholar 

  • Brown, T.A., and J.R. Southon. 1997. Corrections for contamination background in AMS C-14 measurements. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 123: 208–213.

    Article  Google Scholar 

  • Calcagnile, L., and G. Quarta. 2010. E/Q and ME/Q(2) contributions to machine background in sequential injection radiocarbon AMS. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 830–833.

    Article  Google Scholar 

  • Chamizo, E., J.M. Lopez-Gutierrez, A. Ruiz-Gomez, F.J. Santos, M. Garcia-Leon, C. Maden, and V. Alfimov. 2008. Status of the compact 1 MV AMS facility at the Centro Nacional de Aceleradores (Spain). Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 266: 2217–2220.

    Article  Google Scholar 

  • Döbeli, M., C. Kottler, M. Stocker, S. Weinmann, H.A. Synal, M. Grajcar, and M. Suter. 2004. Gas ionization chambers with silicon nitride windows for the detection and identification of low energy ions. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 219: 415–419.

    Article  Google Scholar 

  • Donahue, D.J., T.W. Linick, and A.J.T. Jull. 1990. Isotope ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32: 135–142.

    Google Scholar 

  • Eilers, G., A. Persson, C. Gustavsson, L. Ryderfors, E. Mukhtar, G. Possnert, and M. Salehpour. 2013. The radiocarbon intracavity optogalvanic spectroscopy setup at uppsala. Radiocarbon 55: 237–250.

    Article  Google Scholar 

  • Fahrni, S.M., L. Wacker, H.A. Synal, and S. Szidat. 2013. Improving a gas ion source for C-14 AMS. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 294: 320–327.

    Article  Google Scholar 

  • Fink, D., M. Hotchkis, Q. Hua, G. Jacobsen, A. Smith, U. Zoppi, D. Child, C. Mifsud, H. van der Gaast, A. Williams, and M. Williams. 2004. The antares AMS facility at ANSTO. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 223: 109–115.

    Article  Google Scholar 

  • Fink, D. 2010. AMS-11 in Rome, 2008: Past achievements, current and future trends. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 1334–1342.

    Google Scholar 

  • Freeman, S., G.T. Cook, A.B. Dougans, P. Naysmith, K.M. Wilcken, and S. Xu. 2010. Improved SSAMS performance. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 715–717.

    Article  Google Scholar 

  • Galli, I., S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, and P.A. Mando. 2013. Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55: 213–223.

    Article  Google Scholar 

  • Godwin, H. 1962. Half-life of radiocarbon. Nature 195: 984.

    Article  Google Scholar 

  • Goslar, T., J. Czernik, and E. Goslar. 2004. Low-energy C-14 AMS in Poznan radiocarbon laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 223: 5–11.

    Article  Google Scholar 

  • Gottdang, A., M. Klein, and D. Mous. 2001. Accelerator mass spectrometry at high voltage engineering Europa (HVEE). Radiocarbon 43: 149–156.

    Google Scholar 

  • Guilderson, T.P., E.B. Roark, P.D. Quay, S.R.F. Page, and C. Moy. 2006. Seawater radiocarbon evolution in the gulf of Alaska: 2002 observations. Radiocarbon 48: 1–15.

    Google Scholar 

  • Hellborg, R. 2005. Electrostatic accelerators. Berlin: Springer.

    Google Scholar 

  • Hong, W., J.H. Park, K.S. Sung, H.J. Woo, J.K. Kim, H.W. Choi, and G.D. Kim. 2010. A New 1MV AMS Facility at Kigam. Radiocarbon 52: 243–251.

    Google Scholar 

  • Jacob, S., M. Suter, and H. Synal. 2000. Ion beam interaction with stripper gas—key for AMS at sub MeV. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 172: 235–241.

    Article  Google Scholar 

  • Karlén, I., et al. 1964. Absolute determination of the activity of two C14 dating standards. Arkiv for Geofysik 4: 465–471.

    Google Scholar 

  • Kiisk, M., B. Erlandsson, M. Faarinen, R. Hellborg, K. Hakansson, P. Persson, G. Skog, and K. Stenstrom. 2002. The charge state distribution of a carbon beam measured at the lund pelletron accelerator with the newly installed terminal pumping system in use. Nuclear Instruments and Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 481: 1–8.

    Article  Google Scholar 

  • Knoll, G. 2000. Radiation Detection and Measurement. New York: John Wiley and Sons Inc.

    Google Scholar 

  • Kobayashi, K., E. Niu, S. Itoh, H. Yamagata, Z. Lomtatidze, I. Jorjoliani, K. Nakamura, and H. Fujine. 2007. The compact C-14 AMS facility of Paleo Labo Co., Ltd, Japan. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 259: 31–35.

    Article  Google Scholar 

  • Kutschera, W., P. Collon, H. Friedmann, R. Golser, P. Hille, A. Priller, W. Rom, P. Steier, S. Tagesen, A. Wallner, E. Wild, and G. Winkler. 1997. VERA: A new AMS facility in Vienna. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 123: 47–50.

    Article  Google Scholar 

  • Liebl, H. 2008. Applied charged particle optics. Berlin Heidelberg: Springer.

    Google Scholar 

  • Litherland, A.E. 1980. Ultrasensitive mass spectrometry with accelerators. Annual Review of Nuclear and Particle Science 30: 437–473.

    Article  Google Scholar 

  • Middleton, R., D. Juenemann, and J. Klein. 1994. Isotopic fractionation of negative-ions produced by CS sputtering in a high-intensity source. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 93: 39–51.

    Article  Google Scholar 

  • Müller, A. 2009. Entwicklung von universellen AMS Anlagen bei tiefen Energien.

    Google Scholar 

  • Müller, A., A. Cassimi, M. Dobeli, M. Mallepell, I. Monnet, M. Simon, M. Suter, and H. Synal. 2011. A new mini gas ionization chamber for IBA applications. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 269: 3037–3040.

    Article  Google Scholar 

  • Niklaus, T.R., G. Bonani, Z. Guo, M. Suter, and H.A. Synal. 1994. Optimizing tandem accelerator stripping efficiency by simulation of charge changing processes. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 92: 115–121.

    Article  Google Scholar 

  • Northcliffe, L.C., and R. Schilling. 1970. Range and stopping-power tables for heavy ions. Atomic Data and Nuclear Data Tables 7: 233–463.

    Article  Google Scholar 

  • Prasad, G.V.R., J.E. Noakes, A. Cherkinsky, R. Culp, and D. Dvoracek. 2013. The new 250 kv single stage AMS system at Cais, University of Georgia: performance comparison with a 500 kv compact tandem machine. Radiocarbon 55: 319–324.

    Article  Google Scholar 

  • Ramsey, C.B., and R.E.M. Hedges. 1997. Hybrid Ion Sources: Radiocarbon Measurements from Microgram to Milligram. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 123: 539–545.

    Article  Google Scholar 

  • Roberts, M.L., and J.R. Southon. 2007. A Preliminary Determination of the Absolute C-14/C-12 Ratio of OX-I. Radiocarbon 49: 441–445.

    Google Scholar 

  • Rozanski, K., W. Stichler, R. Gonfiantini, E.M. Scott, R.P. Beukens, B. Kromer, and J. Vanderplicht. 1992. The IAEA C-14 intercomparison exercise 1990. Radiocarbon 34: 506–519.

    Google Scholar 

  • Santos, G.M., J.R. Southon, N.J. Drenzek, L.A. Ziolkowski, E. Druffel, X. Xu, D. Zhang, S. Trumbore, T.I. Eglinton, and K.A. Hughen. 2010. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. Radiocarbon 52: 1322–1335.

    Google Scholar 

  • Scott, E.M. 2006. Assuring measurement quality: the international 14C laboratory inter-comparison program. Pages News 14: 7–9.

    Google Scholar 

  • Scott, E.M., et al. 2010. The fifth international radiocarbon intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52: 859–865.

    Google Scholar 

  • Skog, G. 2007. The single stage AMS machine at Lund University: status report. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 259: 1–6.

    Article  Google Scholar 

  • Smith, A.M., Q. Hua, A. Williams, V. Levchenko, and B. Yang. 2010. Developments in micro-sample C-14 AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 919–923.

    Article  Google Scholar 

  • Southon, J. 2011. Are the fractionation corrections correct: are the isotopic shifts for C-14/C-12 ratios in physical processes and chemical reactions really twice those for C-13/C-12? Radiocarbon 53: 691–704.

    Google Scholar 

  • Southon, J.R., M.W. Caffee, J.C. Davis, T.L. Moore, I.D. Proctor, B. Schumacher, and J.S. Vogel. 1990. The new LLNL AMS spectrometer. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 52: 301–305.

    Article  Google Scholar 

  • Southon, J., G. Santos, K. Druffel-Rodriguez, E. Druffel, S. Trumbore, X. Xu, S. Griffin, S. Ali, and M. Mazon. 2004. The keck carbon cycle AMS laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46: 41–49.

    Google Scholar 

  • Steinhof, A. 2013. Data analysis at the JENA C-14 laboratory. Radiocarbon 55: 282–293.

    Article  Google Scholar 

  • Steinhof, A. 2014. Analysis of the background of the Jena 14C-AMS facility. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 331: 238–242.

    Article  Google Scholar 

  • Steinhof, A., I. Hejja, and T. Wagner. 2010. Improvements of the Jena AMS system. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 902–905.

    Article  Google Scholar 

  • Suter, M., R. Balzer, G. Bonani, and W. Wolfli. 1984. A fast beam pulsing system for isotope ratio measurements. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 5: 242–246.

    Article  Google Scholar 

  • Synal, H., and L. Wacker. 2010. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 268: 701–707.

    Article  Google Scholar 

  • Synal, H., S. Jacob, and M. Suter. 2000. The PSI/ETH small radiocarbon dating system. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 172: 1–7.

    Article  Google Scholar 

  • Synal, H., M. Stocker, and M. Suter. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 259: 7–13.

    Article  Google Scholar 

  • Synal, H.A., T. Schulze-Koenig, M. Seiler, M. Suter, and L. Wacker. 2013. Mass spectrometric detection of radiocarbon for dating applications. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 294: 349–352.

    Article  Google Scholar 

  • Wacker, L., G. Bonani, M. Friedrich, I. Hajdas, B. Kromer, M. Nemec, M. Ruff, M. Suter, H.A. Synal, and C. Vockenhuber. 2010. MICADAS: routine and high precision radiocarbon dating. Radiocarbon 52: 252–262.

    Google Scholar 

  • White, N.R., et al. 1981. The radiocarbon facility at the Research Lab for Archaeology in Oxford—a review. Symposium on Accelerator Mass Spectrometry, Argonne National Laboratory, Argonne, Illinois, 1981, Argonne, Argonne National Laboratory (ANL)—Physics Division.

    Google Scholar 

  • Wollnik, H. 1987. Optics of charged particles.

    Google Scholar 

  • Ziegler, J.F., M.D. Ziegler, and J.P. Biersack. 2010. SRIM—the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268: 1818–1823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinhof, A. (2016). Accelerator Mass Spectrometry of Radiocarbon. In: Schuur, E., Druffel, E., Trumbore, S. (eds) Radiocarbon and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-25643-6_8

Download citation

Publish with us

Policies and ethics