Skip to main content

Radiocarbon in Terrestrial Systems

  • Chapter
  • First Online:
Radiocarbon and Climate Change

Abstract

This chapter focuses on how radiocarbon (14C) is used both as a tracer of source pools and for determining age on multiple time scales, providing a powerful approach for understanding the dynamics of terrestrial ecosystems. A range of applications is introduced, from estimating the lifespan of whole organisms to using the age of respired carbon (C) to partition sources of respired CO2. This chapter also provides examples that apply models introduced in Chapter 3 to the soil organic C pool. Lastly, this chapter introduces several new 14C approaches including low-level labeling to understand C cycling processes occurring on shorter time scales from minutes to months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, G.L., and K. Krzywinski. 2007. Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. BMC Ecology 7: 4.

    Article  Google Scholar 

  • Andrews, J.A., R. Matamala, K.M. Westover, and W.H. Schlesinger. 2000. Temperature effects on the diversity of soil heterotrophs and the delta C-13 of soil-respired CO2. Soil Biology and Biochemistry 32: 699–706.

    Article  Google Scholar 

  • Aravena, R., B.G. Warner, D.J. Charman, L.R. Belyea, S.P. Mathur, and H. Dinel. 1993. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada. Radiocarbon 35: 271–276.

    Google Scholar 

  • Baisden, W.T., R. Amundson, A.C. Cook, and D.L. Brenner. 2002. Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochemical Cycles 16: 64.

    Google Scholar 

  • Barber, K.E., and P.G. Langdon. 2007. What drives the peat-based palaeoclimate record? A critical test using multi-proxy climate records from northern Britain. Quaternary Science Reviews 26: 3318–3327.

    Article  Google Scholar 

  • Barber, K.E., F.M. Chambers, and D. Maddy. 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews 22: 521–539.

    Article  Google Scholar 

  • Billings, S.A., and S.E. Ziegler. 2008. Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Global Change Biology 14: 1025–1036.

    Article  Google Scholar 

  • Biondi, F., S.D.J. Strachan, S. Mensing, and G. Piovesan. 2007. Radiocarbon analysis confirms the annual nature of Sagebrush growth rings. Radiocarbon 49: 1231–1240.

    Google Scholar 

  • Blaauw, M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518.

    Article  Google Scholar 

  • Blaauw, M., and J.A. Christen. 2005. Radiocarbon peat chronologies and environmental change. Journal of the Royal Statistical Society Series C-Applied Statistics 54: 805–816.

    Article  Google Scholar 

  • Borken, W., K. Savage, E.A. Davidson, and S.E. Trumbore. 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology 12: 177–193.

    Article  Google Scholar 

  • California Department of Health Services. 2005. California Code of Regulations. Title 17. Division 1. Chapter 5. Subchapter 4. Group 2. Article 9. par. 30237. Schedule C.

    Google Scholar 

  • Camargo, P.B., R.D.P. Salomao, S. Trumbore, and L.A. Martinelli. 1994. How old are large Brazil Nut trees (Bertholletia excelsa) in the Amazon? Scientia Agricola 51: 389–391.

    Article  Google Scholar 

  • Carbone, M.S., and S.E. Trumbore. 2007. Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytologist 176: 124–135.

    Article  Google Scholar 

  • Carbone, M.S., C.I. Czimczik, K.E. McDuffee, and S.E. Trumbore. 2007. Allocation and residence time of photosynthetic products in a boreal forest using a low-level (14)C pulse-chase labeling technique. Global Change Biology 13: 466–477.

    Article  Google Scholar 

  • Castanha, C., S. Trumbore, and R. Amundson. 2008. Methods of separating soil carbon pools affect the chemistry and turnover time of isolated fractions. Radiocarbon 50: 83–97.

    Google Scholar 

  • Chambers, J.Q., N. Higuchi, and J.P. Schimel. 1998. Ancient trees in Amazonia. Nature 391: 135–136.

    Article  Google Scholar 

  • Chanton, J.P., P.H. Glaser, L.S. Chasar, D.J. Burdige, M.E. Hines, D. I. Siegel, L.B. Tremblay, and W.T. Cooper. 2008. Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles 22.

    Google Scholar 

  • Chanton, J.P., J.E. Bauer, P.A. Glaser, D.I. Siegel, C.A. Kelley, S.C. Tyler, E.H. Romanowicz, and A.H. Lazrus. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochimica et Cosmochimica Acta 59: 3663–3668.

    Article  Google Scholar 

  • Charman, D.J., R. Aravena, and B.G. Warner. 1994. Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. Journal of Ecology 82: 55–62.

    Article  Google Scholar 

  • Charman, D.J., R. Aravena, C.L. Bryant, and D.D. Harkness. 1999. Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England. Geology 27: 539–542.

    Article  Google Scholar 

  • Chasar, L.S., J.P. Chanton, P.H. Glaser, D.I. Siegel, and J.S. Rivers. 2000. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Global Biogeochemical Cycles 14: 1095–1108.

    Article  Google Scholar 

  • Christensen, T., N. Panikov, M. Mastepanov, A. Joabsson, A. Stewart, M. Oquist, M. Sommerkorn, S. Reynaud, and B. Svensson. 2003. Biotic controls on CO2 and CH4 exchange in wetlands—a closed environment study. Biogeochemistry 64: 337–354.

    Article  Google Scholar 

  • Cisneros-Dozal, L.M., S. Trumbore, and P.J. Hanson. 2006. Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Global Change Biology 12: 194–204.

    Article  Google Scholar 

  • Clymo, R.S. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 303: 605–654.

    Article  Google Scholar 

  • Clymo, R., and C. Bryant. 2008. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7 m deep raised peat bog. Geochimica Et Cosmochimica Acta 72: 2048–2066.

    Google Scholar 

  • Cowie, B.R., B.M. Greenberg, and G.F. Slater. 2010. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance C-14 analysis of PLFA. Environmental Science and Technology 44: 2322–2327.

    Article  Google Scholar 

  • Czimczik, C.I., and S.E. Trumbore. 2007. Short-term controls on the age of microbial carbon sources in boreal forest soils. Journal of Geophysical Research-Biogeosciences 112: 8.

    Article  Google Scholar 

  • Czimczik, C.I., K.K. Treseder, M.S. Carbone, and S.E. Trumbore. 2005. Radiocarbon—a low-impact tool to study nutrient transport by soil fungi under field conditions. New Phytologist 166: 595–600.

    Article  Google Scholar 

  • Czimczik, C.I., S.E. Trumbore, M.S. Carbone, and G.C. Winston. 2006. Changing sources of soil respiration with time since fire in a boreal forest. Global Change Biology 12: 957–971.

    Article  Google Scholar 

  • Dioumaeva, I., S. Trumbore, E.A.G. Schuur, M.L. Goulden, M. Litvak, and A.I. Hirsch. 2002. Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon. Journal of Geophysical Research-Atmospheres 108.

    Google Scholar 

  • Don, A., and E.D. Schulze. 2008. Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91: 117–131.

    Article  Google Scholar 

  • Duddleston, K.N., M.A. Kinney, R.P. Kiene, and M.E. Hines. 2002. Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Global Biogeochemical Cycles 16.

    Google Scholar 

  • Dutta, K., E.A.G. Schuur, J.C. Neff, and S.A. Zimov. 2006. Potential carbon release from permafrost soils of northeastern Siberia. Global Change Biology 12: 2336–2351.

    Article  Google Scholar 

  • Ellis, C.J., and L. Rochefort. 2006. Long-term sensitivity of a high Arctic wetland to Holocene climate change. Journal of Ecology 94: 441–454.

    Article  Google Scholar 

  • Evans, C., C. Freeman, L. Cork, D. Thomas, B. Reynolds, M. Billett, M. Garnett, and D. Norris. 2007. Evidence against recent climate-induced destabilisation of soil carbon from C-14 analysis of riverine dissolved organic matter. Geophysical Research Letters 34.

    Google Scholar 

  • Fichtler, E., D.A. Clark, and M. Worbes. 2003. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and C-14. Biotropica 35: 306–317.

    Article  Google Scholar 

  • Fissore, C., C.P. Giardina, R.K. Kolka, C.C. Trettin, G.M. King, M.F. Jurgensen, C.D. Barton, and S.D. McDowell. 2008. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Global Change Biology 14: 193–205.

    Google Scholar 

  • Fissore, C., C.P. Giardina, C.W. Swanston, G.M. King, and R.K. Kolka. 2009. Variable temperature sensitivity of soil organic carbon in North American forests. Global Change Biology 15: 2295–2310.

    Article  Google Scholar 

  • Fontaine, S., S. Barot, P. Barre, N. Bdioui, B. Mary, and C. Rumpel. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–U210.

    Google Scholar 

  • Frank, D., T. Depriest, K. McLauchlan, and A. Risch. 2011. Topographic and ungulate regulation of soil C turnover in a temperate grassland ecosystem. Global Change Biology 17: 495–504.

    Article  Google Scholar 

  • Friend, A.L., G. Scarasciamugnozza, J.G. Isebrands, and P.E. Heilman. 1991. Quantification of 2 year old hybrid poplar root systems—morphology, biomass, and C-14 distribution. Tree Physiology 8: 109–119.

    Article  Google Scholar 

  • Froberg, M., D. Berggren, B. Bergkvist, C. Bryant, and J. Mulder. 2006. Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77: 1–23.

    Article  Google Scholar 

  • Gaudinski, J.B., S.E. Trumbore, E.A. Davidson, and S.H. Zheng. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33–69.

    Article  Google Scholar 

  • Gaudinski, J.B., S.E. Trumbore, E.A. Davidson, A.C. Cook, D. Markewitz, and D.D. Richter. 2001. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129: 420–429.

    Article  Google Scholar 

  • Gaudinski, J.B., M.S. Torn, W.J. Riley, C. Swanston, S.E. Trumbore, J.D. Joslin, H. Majdi, T.E. Dawson, and P.J. Hanson. 2009. Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Global Change Biology 15: 992–1014.

    Article  Google Scholar 

  • Glissman, K., K.-J. Chin, P. Casper, and R. Conrad. 2004. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microbial Biology 48: 389–399.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands—role in the carbon-cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Guo, L.D., C.L. Ping, and R.W. Macdonald. 2007. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophysical Research Letters 34.

    Google Scholar 

  • Hanson, P.J., C.W. Swanston, C.T. Garten, D.E. Todd, and S.E. Trumbore. 2005. Reconciling change in Oi-horizon carbon-14 with mass loss for an oak forest. Soil Science Society of America Journal 69: 1492–1502.

    Article  Google Scholar 

  • Hardie, S.M.L., M.H. Garnett, A.E. Fallick, N.J. Ostle, and A.P. Rowland. 2009. Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma 153: 393–401.

    Article  Google Scholar 

  • Harrison, K.G. 2004. Soil carbon CO2 fertilization factor: the measure of an ecosystem’s capacity to increase soil carbon storage in response to elevated CO2 levels. Geochemistry Geophysics Geosystems 5.

    Google Scholar 

  • Hicks Pries, C., E. Schuur, and G. Crummer. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19: 649–661.

    Article  Google Scholar 

  • Hobbie, E.A., N.S. Weber, J.M. Trappe, and G.J. van Klinken. 2002. Using radiocarbon to determine the mycorrhizal status of fungi. New Phytologist 156: 129–136.

    Article  Google Scholar 

  • Hopkins, F.M., M.S. Torn, and S.E. Trumbore. 2012. Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences of the United States of America 109: E1753–E1761.

    Article  Google Scholar 

  • Hopkins, F.M., T.R. Filley, G. Gleixner, M. Lange, S.M. Top, and S.E. Trumbore. 2014. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology and Biochemistry 76: 57–69.

    Article  Google Scholar 

  • Horvitz, C.C., and L. Sternberg. 1999. C-14 dating of tree falls on Barro Colorado Island (Panama): a new method to study tropical rain forest gap dynamics. Journal of Tropical Ecology 15: 723–735.

    Article  Google Scholar 

  • Ingalls, A.E., E.E. Ellis, G.M. Santos, K.E. McDuffee, L. Truxal, R.G. Keil, and E.R.M. Druffel. 2010. HPLC purification of higher plant-derived lignin phenols for compound specific radiocarbon analysis. Analytical Chemistry 82: 8931–8938.

    Article  Google Scholar 

  • Jenkinson, D.S., D.E. Adams, and A. Wild. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Article  Google Scholar 

  • Joslin, J.D., J.B. Gaudinski, M.S. Torn, W.J. Riley, and P.J. Hanson. 2006. Fine-root turnover patterns and their relationship to root diameter and soil depth in a C-14-labeled hardwood forest. New Phytologist 172: 523–535.

    Article  Google Scholar 

  • Juutinen, S., T. Larmola, R. Remus, E. Mirus, W. Merbach, J. Silvola, and J. Augustin. 2003. The contribution of Phragmites australis litter to methane (CH4) emission in planted and non-planted fen microcosms. Biology and Fertility of Soils 38: 10–14.

    Article  Google Scholar 

  • Keller, J.K., and S.D. Bridgham. 2007. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnology and Oceanography 52: 96–107.

    Article  Google Scholar 

  • King, J., and W. Reeburgh. 2002. A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biology and Biochemistry 34: 173–180.

    Article  Google Scholar 

  • King, J.Y., W.S. Reeburgh, K.K. Thieler, G.W. Kling, W.M. Loya, L.C. Johnson, and K.J. Nadelhoffer. 2002. Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: the contribution of photosynthates to methane emission. Global Biogeochemical Cycles 16: 10.

    Article  Google Scholar 

  • Koarashi, J., W.C. Hockaday, C.A. Masiello, and S.E. Trumbore. 2012. Dynamics of decadally cycling carbon in subsurface soils. Journal of Geophysical Research 117: G03033.

    Article  Google Scholar 

  • Kotsyurbenko, O.R., K.J. Chin, M.V. Glagolev, S. Stubner, M.V. Simankova, A.N. Nozhevnikova, and R. Conrad. 2004. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environmental Microbiology 6: 1159–1173.

    Article  Google Scholar 

  • Kramer, C., S. Trumbore, M. Froeberg, L.M.C. Dozal, D. Zhang, X. Xu, G.M. Santos, and P.J. Hanson. 2010. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biology and Biochemistry 42: 1028–1037.

    Article  Google Scholar 

  • Kruger, M., P. Frenzel, and R. Conrad. 2001. Microbial processes influencing methane emission from rice fields. Global Change Biology 7: 49–63.

    Article  Google Scholar 

  • Kuhry, P. 1994. The role of fire in the development of sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology 82: 899–910.

    Article  Google Scholar 

  • Kuhry, P. 2008. Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: timing, pathways and causes. Boreas 37: 316–327.

    Article  Google Scholar 

  • Kumata, H., M. Uchida, E. Sakuma, T. Uchida, K. Fujiwara, M. Tsuzuki, M. Yoneda, and Y. Shibata. 2006. Compound class specific C-14 analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1.1 aerosols from residential areas of suburban Tokyo. Environmental Science and Technology 40: 3474–3480.

    Article  Google Scholar 

  • Kurokawa, H., T. Yoshida, T. Nakamura, J.H. Lai, and T. Nakashizuka. 2003. The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by C-14 dating. Journal of Tropical Ecology 19: 1–7.

    Article  Google Scholar 

  • Kuzyakov, Y., and R. Bol. 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry 38: 747–758.

    Article  Google Scholar 

  • Leavitt, S.W., E.A. Paul, B.A. Kimball, G.R. Hendrey, J.R. Mauney, R. Rauschkolb, H. Rogers, K.F. Lewin, J. Nagy, P.J. Pinter, and H.B. Johnson. 1994. Carbon-isotope dynamics of free-air CO2-enriched cotton and soils. Agricultural and Forest Meteorology 70: 87–101.

    Article  Google Scholar 

  • Leifeld, J., M. Zimmermann, J. Fuhrer, and F. Conen. 2009. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Global Change Biology 15: 668–679.

    Article  Google Scholar 

  • Lichter, J., S.A. Billings, S.E. Ziegler, D. Gaindh, R. Ryals, A.C. Finzi, R.B. Jackson, E.A. Stemmler, and W.H. Schlesinger. 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology 14: 2910–2922.

    Article  Google Scholar 

  • Mack, M.C., E.A.G. Schuur, M.S. Bret-Harte, G.R. Shaver, and F.S. Chapin. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431: 440–443.

    Article  Google Scholar 

  • Mack, M.C., M.S. Bret-Harte, T.N. Hollingsworth, R.R. Jandt, E.A.G. Schuur, G.R. Shaver, and D.L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475: 489–492.

    Article  Google Scholar 

  • Martens, C.S., C.A. Kelley, and J.P. Chanton. 1992. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, western Alaska. Journal of Geophysical Research 97D: 16689–16701.

    Article  Google Scholar 

  • Martinez-Ramos, M., and E.R. Alvarez-Buylla. 1998. How old are tropical rain forest trees? Trends in Plant Science 3: 400–405.

    Article  Google Scholar 

  • Matamala, R., M. Gonzalez-Meler, J. Jastrow, R. Norby, and W. Schlesinger. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385–1387.

    Article  Google Scholar 

  • Mayorga, E., A.K. Aufdenkampe, C.A. Masiello, A.V. Krusche, J.I. Hedges, P.D. Quay, J.E. Richey, and T.A. Brown. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436: 538–541.

    Article  Google Scholar 

  • McFarlane, K.J., M.S. Torn, P.J. Hanson, R.C. Porras, C.W. Swanston, M.A. Callaham Jr., and T.P. Guilderson. 2012. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry. doi:10.1007/s10533-012-9740-1.

    Google Scholar 

  • Megonigal, J.P., S.C. Whalen, D.T. Tissue, B.D. Bovard, D.B. Albert, and A.S. Allen. 1999. A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Science Society of America Journal 63: 665–671.

    Article  Google Scholar 

  • Mozeto, A.A., P. Fritz, M.Z. Moreira, E. Vetter, R. Aravena, E. Salati, and R.J. Drimmie. 1988. Growth-rates of natural Amazonian forest trees based on radiocarbon measurements. Radiocarbon 30: 1–6.

    Google Scholar 

  • Muhr, J., and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.

    Google Scholar 

  • Muhr, J., W. Borken, and E. Matzner. 2009. Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil. Global Change Biology 15: 782–793.

    Article  Google Scholar 

  • Nakagawa, F., N. Yoshida, A. Sugimoto, E. Wada, T. Yoshioka, S. Ueda, and P. Vijarnsorn. 2002. Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochemistry 61: 1–19.

    Article  Google Scholar 

  • Neff, J.C., J.C. Finlay, S.A. Zimov, S.P. Davydov, J.J. Carrasco, E.A. G. Schuur, and A.I. Davydova. 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophysical Research Letters 33.

    Google Scholar 

  • Nowinski, N.S., S.E. Trumbore, E.A.G. Schuur, M.C. Mack, and G.R. Shaver. 2008. Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11: 16–25.

    Article  Google Scholar 

  • Nowinski, N.S., L. Taneva, S.E. Trumbore, and J.M. Welker. 2010. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163: 785–792.

    Article  Google Scholar 

  • Olk, D.C., and E.G. Gregorich. 2006. Overview of the symposium proceedings, “Meaningful pools in determining soil carbon and nitrogen dynamics”. Soil Science Society of America Journal 70: 967–974.

    Article  Google Scholar 

  • Osterkamp, T.E., M.T. Jorgenson, E.A.G. Schuur, Y.L. Shur, M.Z. Kanevskiy, J.G. Vogel, and V.E. Tumskoy. 2009. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafrost and Periglacial Processes 20: 235–256.

    Article  Google Scholar 

  • Parton, W.J., P.J. Hanson, C. Swanston, M. Torn, S.E. Trumbore, W. Riley, and R. Kelly. 2010. ForCent model development and testing using the Enriched Background Isotope Study (EBIS) experiment.

    Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51: 1173–1179.

    Article  Google Scholar 

  • Pataki, D.E., D.S. Ellsworth, R.D. Evans, M. Gonzalez-Meler, J. King, S.W. Leavitt, G.H. Lin, R. Matamala, E. Pendall, R. Siegwolf, C. Van Kessel, and J.R. Ehleringer. 2003. Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53: 805–818.

    Article  Google Scholar 

  • Paul, E.A., H.P. Collins, and S.W. Leavitt. 2001. Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring C-14 abundance. Geoderma 104: 239–256.

    Article  Google Scholar 

  • Paul, E., S. Morris, R. Conant, and A. Plante. 2006. Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Science Society of America Journal 70: 1023–1035.

    Article  Google Scholar 

  • Petsch, S.T., T.I. Eglinton, and K.J. Edwards. 2001. C-14-dead living biomass: evidence for microbial assimilation of ancient organic carbon during share weathering. Science 292: 1127–1131.

    Article  Google Scholar 

  • Posada, J.M., and E.A.G. Schuur. 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165: 783–795.

    Article  Google Scholar 

  • Pregitzer, K.S., A.J. Burton, J.S. King, and D.R. Zak. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytologist 180: 153–161.

    Article  Google Scholar 

  • Rethemeyer, J., C. Kramer, G. Gleixner, G.L.B. Wiesenberg, L. Schwark, N. Andersen, M.J. Nadeau, and P.M. Grootes. 2004. Complexity of soil organic matter: AMS C-14 analysis of soil lipid fractions and individual compounds. Radiocarbon 46: 465–473.

    Google Scholar 

  • Riley, W.J., J.B. Gaudinski, M.S. Torn, J.D. Joslin, and P.J. Hanson. 2009. Fine-root mortality rates in a temperate forest: estimates using radiocarbon data and numerical modeling. New Phytologist 184: 387–398.

    Article  Google Scholar 

  • Sanderman, J., and R. Amundson. 2008. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 309–327.

    Google Scholar 

  • Schell, D.M. 1983. C-13 and C-14 abundances in Alaskan aquatic organisms—delayed production from peat in Arctic food webs. Science 219: 1068–1071.

    Article  Google Scholar 

  • Schulz, S., and R. Conrad. 1996. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiology Ecology 20: 1–14.

    Article  Google Scholar 

  • Schuur, E.A.G., and S.E. Trumbore. 2006. Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Global Change Biology 12: 165–176.

    Article  Google Scholar 

  • Schuur, E.A.G., S.E. Trumbore, M.C. Mack, and J.W. Harden. 2003. Isotopic composition of carbon dioxide from a boreal forest fire: inferring carbon loss from measurements and modeling. Global Biogeochemical Cycles 17: 1.

    Article  Google Scholar 

  • Schuur, E.A.G., J.G. Vogel, K.G. Crummer, H. Lee, J.O. Sickman, and T.E. Osterkamp. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459: 556–559.

    Article  Google Scholar 

  • Smith, L.C., G.M. MacDonald, A.A. Velichko, D.W. Beilman, O.K. Borisova, K.E. Frey, K.V. Kremenetski, and Y. Sheng. 2004. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303: 353–356.

    Article  Google Scholar 

  • Strand, A., S. Pritchard, M. McCormack, M. Davis, and R. Oren. 2008. Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319: 456–458.

    Article  Google Scholar 

  • Swanston, C.W., M.S. Torn, P.J. Hanson, J.R. Southon, C.T. Garten, E.M. Hanlon, and L. Ganio. 2005. Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma 128: 52–62.

    Article  Google Scholar 

  • Tamm, C.O., and H.G. Ostlund. 1960. Radiocarbon dating of soil humus. Nature 185: 706–707.

    Article  Google Scholar 

  • Tierney, G.L., and T.J. Fahey. 2002. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 32: 1692–1697.

    Article  Google Scholar 

  • Tolonen, K., and J. Turunen. 1996. Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene 6: 171–178.

    Article  Google Scholar 

  • Torn, M.S., C.W. Swanston, C. Castanha, and S.E. Trumbore. 2009. Storage and turnover of organic matter in soil. In Biophysico-chemical processes involving natural nonliving organic matter in environmental systems, 219–272. Wiley.

    Google Scholar 

  • Torn, M.S., S.E. Trumbore, O.A. Chadwick, P.M. Vitousek, and D.M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170–173.

    Article  Google Scholar 

  • Torn, M.S., A.G. Lapenis, A. Timofeev, M.L. Fischer, B.V. Babikov, and J.W. Harden. 2002. Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology 8: 941–953.

    Article  Google Scholar 

  • Torn, M.S., P.M. Vitousek, and S.E. Trumbore. 2005. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8: 352–372.

    Article  Google Scholar 

  • Torn, M.S., M. Kleber, E.S. Zavaleta, B. Zhu, C.B. Field, and S.E. Trumbore. 2013. A dual isotope approach to isolate soil carbon pools of different turnover times. Biogeosciences 10: 8067–8081.

    Article  Google Scholar 

  • Townsend, A.R., P.M. Vitousek, and S.E. Trumbore. 1995. Soil organic-matter dynamics along gradients in temperature and land-use on the island of Hawaii. Ecology 76: 721–733.

    Article  Google Scholar 

  • Treseder, K.K., M.S. Torn, and C.A. Masiello. 2006. An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biology and Biochemistry 38: 1077–1082.

    Article  Google Scholar 

  • Trumbore, S.E. 1993. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles 7: 275–290.

    Article  Google Scholar 

  • Trumbore, S. 2006. Carbon respired by terrestrial ecosystems—recent progress and challenges. Global Change Biology 12: 141–153.

    Article  Google Scholar 

  • Trumbore, S. 2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences 37: 47–66.

    Article  Google Scholar 

  • Trumbore, S., and J. Gaudinski. 2003. The secret lives of roots. Science 302: 1344–1345.

    Article  Google Scholar 

  • Trumbore, S.E., and J.W. Harden. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research-Atmospheres 102: 28817–28830.

    Article  Google Scholar 

  • Trumbore, S.E., and S.H. Zheng. 1996. Comparison of fractionation methods for soil organic matter C-14 analysis. Radiocarbon 38: 219–229.

    Google Scholar 

  • Trumbore, S.E., J.S. Vogel, and J.R. Southon. 1989. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon 31: 644–654.

    Google Scholar 

  • Trumbore, S.E., E.A. Davidson, P.B. Decamargo, D.C. Nepstad, and L.A. Martinelli. 1995. Belowground cycling of carbon in forests and pastures and eastern Amazonia. Global Biogeochemical Cycles 9: 515–528.

    Article  Google Scholar 

  • Trumbore, S.E., O.A. Chadwick, and R. Amundson. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393–396.

    Article  Google Scholar 

  • Trumbore, S.E., J.L. Bubier, J.W. Harden, and P.M. Crill. 1999. Carbon cycling in boreal wetlands: a comparison of three approaches. Journal of Geophysical Research-Atmospheres 104: 27673–27682.

    Article  Google Scholar 

  • Trumbore, S., J.B. Gaudinski, P.J. Hanson, and J.R. Southon. 2002. A whole-ecosystem carbon-14 label in a temperate forest. EOS 83(265): 267–268.

    Google Scholar 

  • Trumbore, S., E.S. Da Costa, D.C. Nepstad, P.B. De Camargo, L. Martinelli, D. Ray, T. Restom, and W. Silver. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology 12: 217–229.

    Article  Google Scholar 

  • Turteltaub, K.W., and J.S. Vogel. 2000. Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Current Pharmaceutical Design 6: 991–1007.

    Article  Google Scholar 

  • Uchikawa, J., B.N. Popp, J.E. Schoonmaker, and L. Xu. 2008. Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology. Journal of Paleolimnology 39: 43–60.

    Article  Google Scholar 

  • van Veen, J.A., and E.A. Paul. 1981. Organic-carbon dynamics in grassland soils.1. Background information and computer-simulation. Canadian Journal of Soil Science 61: 185–201.

    Article  Google Scholar 

  • Vieira, S., S. Trumbore, P.B. Camargo, D. Selhorst, J.Q. Chambers, N. Higuchi, and L.A. Martinelli. 2005. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America 102: 18502–18507.

    Article  Google Scholar 

  • von Lutzowa, M., I. Kogel-Knabner, K. Ekschmittb, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39: 2183–2207.

    Article  Google Scholar 

  • Vonk, J.E., L. Sanchez-Garcia, I. Semiletov, O. Dudarev, T. Eglinton, A. Andersson, and O. Gustafsson. 2010. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 7: 3153–3166.

    Article  Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, and W. Broecker. 1989. C-14 in methane sources and in atmospheric methane—the contribution from fossil carbon. Science 245: 286–290.

    Article  Google Scholar 

  • Walter, K.M., J.P. Chanton, F.S. Chapin, E.A.G. Schuur, and S.A. Zimov. 2008. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. Journal of Geophysical Research-Biogeosciences 113.

    Google Scholar 

  • Wand, U., V.A. Samarkin, H.M. Nitzsche, and H.W. Hubberten. 2006. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnology and Oceanography 51: 1180–1194.

    Article  Google Scholar 

  • Wattel-Koekkoek, E.J.W., P. Buurman, J. van der Plicht, E. Wattel, and N. van Breemen. 2003. Mean residence time of soil organic matter associated with kaolinite and smectite. European Journal of Soil Science 54: 269–278.

    Article  Google Scholar 

  • Worbes, M., and W.J. Junk. 1999. How old are tropical trees? The persistence of a myth. Iawa Journal 20: 255–260.

    Article  Google Scholar 

  • Zimov, S.A., Y.V. Voropaev, I.P. Semiletov, S.P. Davidov, S.F. Prosiannikov, F.S. Chapin III, M.C. Chapin, S. Trumbore, and S. Tyler. 1997. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277: 800–802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schuur, E.A.G., Carbone, M.S., Hicks Pries, C.E., Hopkins, F.M., Natali, S.M. (2016). Radiocarbon in Terrestrial Systems. In: Schuur, E., Druffel, E., Trumbore, S. (eds) Radiocarbon and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-25643-6_6

Download citation

Publish with us

Policies and ethics