Genetic Diversity and Heavy Metal Stress in Plants

  • Shilpi Srivastava
  • Atul BhargavaEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 7)


Heavy metals are considered as potent pollutants due to their widespread occurrence and their acute and chronic toxic effect on plants, animals, and humans. Variation is of great theoretical importance because it is the raw material on which natural selection acts to influence the evolution of hyperaccumulation. Natural variation is also important basis for the development of hyperaccumulation technology as it indicates the potential for improvement of plant traits through selective breeding, and provides variable genetic markers that can be studied by crossbreeding and molecular techniques. Although some degree of hyperaccumulation occurs in all members of the species that can hyperaccumulate heavy metals, quantitative genetic variation in the ability to hyperaccumulate have been reported, both between and within populations. Genetic diversity and variability analysis have proved to be an effective method in grouping accessions for effective management and utilization in genetic improvement of plants for enhanced phytoextraction. The existing genetic diversity in crops can be used for phytoextraction by identifying easily cultivable, high biomass yielding plants, and practicing selection in future generations.


Heavy metals Phytoextraction Hyperaccumulation Variability 


  1. Agarwala SC, Sharma CP, Farooq S, Chatterjee C (1978) Effect of molybdenum deficiency on the growth and metabolism of corn plants raised in sand culture. Can J Bot 56:1905–1908CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  3. Ahmad P, Prasad MNV (2012a) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science Business Media, LLC, New YorkCrossRefGoogle Scholar
  4. Ahmad P, Prasad MNV (2012b) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science Business Media, LLC, New YorkCrossRefGoogle Scholar
  5. Ahsan H, Perrin M, Rahman A, Parvez F, Stute M, Zheng Y (2000) Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med 42:1195–1201PubMedCrossRefGoogle Scholar
  6. Alatise OI, Schrauzer GN (2010) Lead exposure: a contributing cause of the current breast cancer epidemic in Nigerian women. Biol Trace Elem Res 136:127–139PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alloway BJ (2004) Zinc in soil and crop nutrition. International Zinc Association, BrusselsGoogle Scholar
  8. Al-Saleem T (1976) Clinical committee on mercury poisoning. levels of mercury and pathologic changes in patients with organomercury poisoning. Bull World Health Organ 53(suppl):99–104PubMedPubMedCentralGoogle Scholar
  9. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-a review. Environ Exp Bot 75:307–324Google Scholar
  10. Anderson S, Sadinski W, Shugart I (1994) Genetic and molecular ecotoxicology: a research framework. Environ Health Perspect 102:3–8PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aniol A, Gustafson JP (1990) Genetics of tolerance in agronomic plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC-Press, Boca Raton, pp 255–267Google Scholar
  12. Ansari MK, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G (2015) Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. Int J Phytoremediation 17:135–144PubMedCrossRefGoogle Scholar
  13. Arao T, Ae N (2003) Genotypic variation in cadmium levels of rice grain. Soil Sci Plant Nutr 49:473–479CrossRefGoogle Scholar
  14. Arao T, Ishikawa S (2006) Genotypic differences in cadmium concentration and distribution of soybean and rice. Japan Agri Res Q 40:21–30CrossRefGoogle Scholar
  15. Arinola OG, Nwozo SO, Ajiboye JA, Oniye AH (2008) Evaluation of trace elements and total antioxidant status in Nigerian cassava processors Pak. J Nutr 7:770–772Google Scholar
  16. Assunção AGL, Bookum WM, Nelissen HJM, Royal Vooijs, Shat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419CrossRefGoogle Scholar
  17. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544PubMedCrossRefGoogle Scholar
  18. Aydinalp C, Marinova S (2009) The effect of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian J Agr Sci 15:347–350Google Scholar
  19. Babst-Kostecka AA, Parisod C, Godé C, Vollenweider P, Pauwels M (2014) Patterns of genetic divergence among populations of the pseudometallophyte Biscutella laevigata from southern Poland. Plant Soil 383:245–256CrossRefGoogle Scholar
  20. Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  21. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  22. Baker AJM, Whiting SN (2002) In search of the Holy Grail—a further step in understanding metal hyperaccumulation? New Phytol 155:1–7CrossRefGoogle Scholar
  23. Baldrian P, Gabriel J (2002) Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94:428–436PubMedCrossRefGoogle Scholar
  24. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P (2005) Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 99:105–110CrossRefGoogle Scholar
  25. Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from Pacific Northwest. Crop Sci 38:1261–1271CrossRefGoogle Scholar
  26. Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE 7:e35121PubMedPubMedCentralCrossRefGoogle Scholar
  27. Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004PubMedPubMedCentralCrossRefGoogle Scholar
  28. Belfiore NN, Anderson SL (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489:97–122PubMedCrossRefGoogle Scholar
  29. Bentley PJ, Grubb BR (1991) Experimental dietary hyperzincemia tissue disposition of excess zinc in rabbits. Trace Elem Med 8:202–207Google Scholar
  30. Bert V, Macnair MR, de Laguérie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233CrossRefGoogle Scholar
  31. Bhargava A, Shukla S, Rajan S, Ohri D (2007) Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genet Res Crop Evol 54:167–173CrossRefGoogle Scholar
  32. Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D (2008) Chenopodium: a prospective plant for phytoextraction. Acta Physiol Plant 30:111–120CrossRefGoogle Scholar
  33. Bhargava A, Shukla S, Ohri D (2010) Mineral composition in foliage of some cultivated and wild species of Chenopodium. Span J Agri Res 8:371–376CrossRefGoogle Scholar
  34. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012a) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120PubMedCrossRefGoogle Scholar
  35. Bhargava A, Gupta VK, Singh AK, Gaur R (2012b) Microbes for heavy metal remediation. In: Gaur R, Mehrotra S, Pandey RR (eds) Microbial applications. IK International Publishing, New Delhi, pp 167–177Google Scholar
  36. Bhargava A, Srivastava S (2013) Quinoa: botany, production and uses. CABI, OxfordshireCrossRefGoogle Scholar
  37. Bhargava A, Srivastava S (2014) Transgenic approaches for phytoextraction of heavy metals. In: Ahmad P, Wani MR, Azooz MM, Tran LP (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 57–80CrossRefGoogle Scholar
  38. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  39. Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120PubMedCrossRefGoogle Scholar
  40. Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51PubMedCrossRefGoogle Scholar
  41. Bickham JW, Smolen SL (1994) Somatic and heritable effect of environmental genotoxins and the emergence of evolutionary toxicology. Environ Health Perspect 102:25–28PubMedPubMedCentralCrossRefGoogle Scholar
  42. Bijlsma R, Loeschcke V (2011) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129PubMedPubMedCentralCrossRefGoogle Scholar
  43. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384PubMedCrossRefGoogle Scholar
  44. Bonacker D, Stoiber T, Wang M, Bohm KJ, Prots I, Unger E, Thier R, Bolt HM, Degen GH (2004) Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch Toxicol 78:575–583PubMedCrossRefGoogle Scholar
  45. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator. Thlaspi caerulescens. Biotechnol Bioeng 83:158–167PubMedCrossRefGoogle Scholar
  46. Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, Vicente O (2008) Plant responses to abiotic stress in their natural habitats. Bull UASVM, Hortic 65:53–58Google Scholar
  47. Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals, soil biology 30. Springer, BerlinGoogle Scholar
  48. Boyer JS (1982) Plant productivity and environment. Science 218:443–448PubMedCrossRefGoogle Scholar
  49. Bradshaw AD (1984) The importance of evolutionary ideas in ecology and vice versa. In: Shorrocks B (ed) Evolutionary ecology. Blackwell, Oxford, pp 1–25Google Scholar
  50. Brennan RF (2005) Zinc application and its availability to plants. PhD dissertation, school of environmental science, division of science and engineering, Murdoch University, MurdochGoogle Scholar
  51. Brewer GJ (2001) Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp Biol Med (Maywood) 226:665–673Google Scholar
  52. Brewer GJ (2009) The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J Am Coll Nutr 28:238–242PubMedCrossRefGoogle Scholar
  53. Brewer GJ (2012) Copper toxicity in Alzheimer’s disease: cognitive loss from ingestion of inorganic copper. J Trace Elem Med Biol 26:89–92PubMedCrossRefGoogle Scholar
  54. Brewster UC, Perazella MA (2004) A review of chronic lead intoxication: an unrecognized cause of chronic kidney disease. Am J Med Sci 327:341–347PubMedCrossRefGoogle Scholar
  55. Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27CrossRefGoogle Scholar
  56. Brooks RR (1987) Serpentine and its vegetation. Dioscorides Press, PortlandGoogle Scholar
  57. Brown WL (1983) Genetic diversity and genetic vulnerability—an appraisal. Econ Bot 37:4–12CrossRefGoogle Scholar
  58. Brown MA, Thom JV, Orth GL, Cova P, Juarez J (1964) Food poisoning involving zinc contamination. Arch Environ Health 8:657–660PubMedCrossRefGoogle Scholar
  59. Bush EJ, Barrett SCH (1993) Genetics of mine invasions by Deschampsia cespitosa, Poaceae. Can J Bot 71:1336–1348CrossRefGoogle Scholar
  60. Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006PubMedCrossRefGoogle Scholar
  61. Castoldi AF, Coccini T, Manzo L (2003) Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health 18:19–31PubMedCrossRefGoogle Scholar
  62. Cavani A (2005) Breaking tolerance to nickel. Toxicology 209:119PubMedCrossRefGoogle Scholar
  63. Chakraborti D, Sengupta MK, Rahaman MM, Ahamed S, Chowdhury UK, Hossain MA (2004) Groundwater arsenic contamination and its health effects in the Ganga–Megna–Brahmaputra Plain. J Environ Monit 6:74–83CrossRefGoogle Scholar
  64. Cheng W, Zhang G, Yao H, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. J Zhejiang Univ Sci B 7:565–571PubMedPubMedCentralCrossRefGoogle Scholar
  65. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Poll 109:69–74CrossRefGoogle Scholar
  66. Chaney RL, Li Y-M, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 131–160Google Scholar
  67. Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293CrossRefGoogle Scholar
  68. Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutr 19:901–916CrossRefGoogle Scholar
  69. Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592:79–88PubMedCrossRefGoogle Scholar
  70. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163PubMedCrossRefGoogle Scholar
  71. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230PubMedCrossRefGoogle Scholar
  72. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163–177PubMedPubMedCentralCrossRefGoogle Scholar
  73. Dai ZY, Shu WS, Liao B, Wan CY, Li JT (2011) Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction. J Environ Monit 13:1723–1729PubMedCrossRefGoogle Scholar
  74. DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280PubMedCrossRefGoogle Scholar
  75. DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132PubMedCrossRefGoogle Scholar
  76. Daou S, El Chemaly A, Christofilopoulos P (2011) The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphylococcus epidermidis killing by human neutrophils. Biomaterials 32:1769–1777PubMedCrossRefGoogle Scholar
  77. Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J (1988) Cadmium fume inhalation and emphysema. Lancet 1:663–667PubMedCrossRefGoogle Scholar
  78. de Vos CHR, Schat H, De Waal MAM, Voojs R, Ernst WHO (1991) Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528CrossRefGoogle Scholar
  79. De Wolf H, Blust R, Backeljau T (2004) The population genetic structure of Littorina littorea (Mollusca: Gastropoda) along a pollution gradient in the Scheldt estuary (The Netherlands) using RAPD analysis. Sci Total Environ 325:59–69PubMedCrossRefGoogle Scholar
  80. Demirevska-kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barely plants after excessive supply of copper and manganese. Environ Exp Botany 52:253–266CrossRefGoogle Scholar
  81. Deng J, Liao B, Ye M, Deng D, Lan C, Shu W (2007) The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297:83–92CrossRefGoogle Scholar
  82. Devi CB, Reddy GH, Prasanthi RP, Chetty CS, Reddy GR (2005) Developmental lead exposure alters mitochondrial monoamine oxidase and synaptosomal catecholamine levels in rat brain. Int J Dev Neurosci 23:375–381PubMedCrossRefGoogle Scholar
  83. Dickman MD, Leung KM (1998) Mercury and organochlorine exposure from fish consumption in Hong Kong. Chemosphere 37:991–1015PubMedCrossRefGoogle Scholar
  84. Disante KB, Fuentes D, Cortina J (2010) Response to drought of Zn-stressed Quercus suber L. Seedlings. Env Exp Bot 70:96–103CrossRefGoogle Scholar
  85. Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manage 41:734–741PubMedCrossRefGoogle Scholar
  86. Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum Azad) root mitochondria. Plant, Cell Environ 25:687–693CrossRefGoogle Scholar
  87. Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666PubMedCrossRefGoogle Scholar
  88. Draghici C, Coman G, Jelescu C, Dima C, Chirila E (2010) Heavy metals determination in environmental and biological samples, In: Environmental heavy metal pollution and effects on child mental development—risk assessment and prevention strategies, NATO advanced research workshop, Sofia, Bulgaria, 28 April–1 May 2010Google Scholar
  89. Dubois S, Cheptou PO, Petit C, Meerts P, Poncelet M, Vekemans X, Lefèbvre C, Escarré J (2003) Genetic structure and mating systems of metalliferous and nonmetalliferous populations of Thlaspi caerulescens. New Phytol 157:633–641CrossRefGoogle Scholar
  90. Ducousso A, Petit D, Valero M, Vernet P (1990) Genetic variations between and within populations of perennial grass: Arrhenatherum elatius. Hereditas 65:179–188CrossRefGoogle Scholar
  91. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781CrossRefGoogle Scholar
  92. Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y (2000) Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 26:427–435PubMedCrossRefGoogle Scholar
  94. El-Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386CrossRefGoogle Scholar
  95. Environmental Health Criterea (EHC) (1991) Nickel. WHO, GenevaGoogle Scholar
  96. Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 6:879–886CrossRefGoogle Scholar
  97. EPA (Environmental Protection Agency) (2012) Standards for the use or disposal of sewage sludge. Environmental Protection AgencyGoogle Scholar
  98. Ernst WHO (2006) Evolution of metal tolerance in higher plants. Forest Snow Landscape Res 80:251–274Google Scholar
  99. Ernst E, Lauritsen JG (1991) Effect of organic and inorganic mercury on human sperm motility. Pharmacol Toxicol 68:440–444PubMedCrossRefGoogle Scholar
  100. Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 149:61–69Google Scholar
  101. Fernandez MA, Sanz P, Palomar M, Serra J, Gadea E (1996) Fatal chemical pneumonitis due to cadmium fumes. Occup Med (Lond) 46:372–374CrossRefGoogle Scholar
  102. Florea AM, Busselberg D (2006) Occurrence use and potential toxic effects of metals and metal compounds. Biometals 19:419–427PubMedCrossRefGoogle Scholar
  103. Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic, Dortrech, pp 149–177CrossRefGoogle Scholar
  104. Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730CrossRefGoogle Scholar
  105. Fox GA (1995) Tinkering with the tinkerer: pollution versus evolution. Environ Health Perspect 103:93–100PubMedPubMedCentralCrossRefGoogle Scholar
  106. Foy CD, Chaney RL, White MC (1978) Physiology of metal toxicity in plants. Ann Rev Plant Physiol Plant Mol Biol 29:511–566CrossRefGoogle Scholar
  107. Fuentes FF, Bhargava A (2011) Morphological analysis of quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci 197:124–134Google Scholar
  108. Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Scarascia Mugnozza G, Sabatti M (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol 31:1309–1318PubMedCrossRefGoogle Scholar
  109. Gidlow DA (2004) Lead toxicity. In-depth review. Occup Med 54:76–81CrossRefGoogle Scholar
  110. Grandjean G, Nielsen T (1979) Organolead compounds: environmental health aspects. Residue Rev 72:98–148Google Scholar
  111. Grime JP (1979) Plant strategies and vegetation process. Wiley, New YorkGoogle Scholar
  112. Grześ IM (2007) Does rare Gentianella germanica (Wild.) Börner originating from calamine spoils differ in selected morphological traits from reference populations? Plant Species Biol 22:49–52CrossRefGoogle Scholar
  113. Haase H, Overbeck S, Rink L (2008) Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol 43:394–408PubMedCrossRefGoogle Scholar
  114. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11Google Scholar
  115. Harada E, Hokura A, Takada S, Baba K, Terada Y (2010) Characterization of cadmium accumulation in willow as a woody metal accumulator using synchrotron radiation-based X-ray microanalyses. Plant Cell Physiol 51:848–853PubMedCrossRefGoogle Scholar
  116. Harrison N (2001) Inorganic contaminants in food. In: Watson DH (ed) Food chemical safety contaminants, 1st edn. Woodhead Publishing, Cambridge, pp 148–168CrossRefGoogle Scholar
  117. Hart AJ, Hester T, Sinclair K (2006) The association between metal ions from hip resurfacing and reduced T-cell counts. J Bone Joint Surg Br 88:449–454PubMedCrossRefGoogle Scholar
  118. He B, Yang XE, Ni WZ, Wei YZ, Ye HB (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Bot Sin 44:1365–1370Google Scholar
  119. He LS, Yan XS, Wu DC (1991) Age-dependent variation of zinc-65 metabolism in LACA mice. Int J Radiat Biol 60:907–916PubMedCrossRefGoogle Scholar
  120. Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093PubMedCrossRefGoogle Scholar
  121. Hendrik DJ (2004) Smoking, cadmium and emphysema. Thorax 59:184–185CrossRefGoogle Scholar
  122. Henson TM, Cory W, Rutter MT (2013) Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS ONE 8(5):e63200PubMedPubMedCentralCrossRefGoogle Scholar
  123. Hernández LE, Gárate A, Carpena-Ruiz RO (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106CrossRefGoogle Scholar
  124. Hocking PJ, McLaughlin MJ (2000) Genotypic variation in cadmium accumulation by seed of linseed, and comparison with seeds of other crop species. Aust J Agric Res 51:427–433CrossRefGoogle Scholar
  125. Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37Google Scholar
  126. Ibrahim A, El-Abd S, El-Beltagy AS (1989) A possible role of cobalt in salt tolerance of plant. Egypt J Soil Sci 359–370Google Scholar
  127. Il’yasova D (2005) Schwartz SGG (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207:179–186PubMedCrossRefGoogle Scholar
  128. Israr M, Sahi S (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44:590–595PubMedCrossRefGoogle Scholar
  129. Jalili MA, Abbasi AH (1961) Poisoning by ethyl mercury toluene sulphonanilide. Br J Ind Med 18:303–308PubMedPubMedCentralGoogle Scholar
  130. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998a) Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl 1):1–51PubMedGoogle Scholar
  131. Jarup L, Alfven T, Persson B, Toss G, Elinder CG (1998b) Cadmium may be a risk factor for osteoporosis. Occup Environ Med 55:435–439PubMedPubMedCentralCrossRefGoogle Scholar
  132. Johnson A, Singhal N, Hashmatt M (2011) Metal-plant interactions: toxicity and tolerance. In: Khan MS (ed) Biomanagement of metal-contaminated soils. Springer Science + Business MediaGoogle Scholar
  133. Johnson CL (2004) In the environment: sources, toxicities, and prevention of exposure. Pediatr Ann 33:437–442PubMedCrossRefGoogle Scholar
  134. Kaiser BN, Gridley KL, Brady JN, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754PubMedPubMedCentralCrossRefGoogle Scholar
  135. Kantor D (2006) Guillain-Barre syndrome: the medical encyclopedia. National Library of Medicine and National Institute of Health, BethesdaGoogle Scholar
  136. Kastori RR, Maksimović IV, Marinković RZ, Zeremski-Ŝkorić TM, Ninkov JN, Putnik-Delić MI (2010) Genetic variability of concentration of microelements in wild sunflower species and hybrids. Proc Nat Sci Matica Srpska Novi Sad 118:69–77CrossRefGoogle Scholar
  137. Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17:493–498PubMedCrossRefGoogle Scholar
  138. Kim S, Kang KH, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243PubMedCrossRefGoogle Scholar
  139. Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kopsell DE, Kopsell DA, Lefsrud MG, Curran-Celentano J (2004) Variability in elemental accumulations among leafy Brassica oleracea cultivars and selections. J Plant Nutr 27:1813–1826CrossRefGoogle Scholar
  141. Kumar CL, Kumar SS (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303CrossRefGoogle Scholar
  142. Kuschner WG, D’Alessandro A, Wong H, Blanc PD (1997) Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res 75:7–11PubMedCrossRefGoogle Scholar
  143. Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytorem 6:269–287CrossRefGoogle Scholar
  144. Lamb DT, Ming H, Megharaj M, Naidu R (2010) Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch Environ Contam Toxicol 59:424–432PubMedCrossRefGoogle Scholar
  145. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120PubMedCrossRefGoogle Scholar
  146. Lau O, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58:114–117PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium × hortorum Baley). J Am Soc Hortic Sci 121:77–82Google Scholar
  148. Lee MY, Jung BI, Chung SM, Bae ON, Lee JY, Park JD (2003) Arsenic-induced dysfunction in relaxation of blood vessels. Environ Health Perspect 111:513–517PubMedPubMedCentralCrossRefGoogle Scholar
  149. Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 285–300Google Scholar
  150. Lewis GP, Coughlin LL, Jusko WJ, Hartz S (1972) Contribution of cigarette smoking to cadmium accumulation in man. Lancet 299:291–292CrossRefGoogle Scholar
  151. Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicol 51:277–291CrossRefGoogle Scholar
  152. Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986PubMedCrossRefGoogle Scholar
  153. Li YM, Chaney RL, Schneiter AA, Miller JF (1995) Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci 35:137–141CrossRefGoogle Scholar
  154. Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ (1997) Screening for low cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30CrossRefGoogle Scholar
  155. Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153CrossRefGoogle Scholar
  156. Liu Y, Chen G-C, Zhang J, Shi X, Wang R (2011) Uptake of cadmium from hydroponic solutions by willows (Salix spp.) seedlings. Afr J Biotechnol 10:16209–16218Google Scholar
  157. Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q (2003) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field crops Res 83:271–281CrossRefGoogle Scholar
  158. Liu J, Qian M, Cai G, Zhu Q, Wong MH (2007) Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health 29:189–195PubMedCrossRefGoogle Scholar
  159. Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219:21–28CrossRefGoogle Scholar
  160. Llobet JM, Domingo JL, Colomina MT, Mayayo E, Corbella J (1988) Subchronic oral toxicity of zinc in rats. Bull Environ Contam Toxicol 41:36–43PubMedCrossRefGoogle Scholar
  161. Lu H, Shi X, Costa M, Huang C (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem 279:45–67PubMedCrossRefGoogle Scholar
  162. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  163. Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40PubMedCrossRefGoogle Scholar
  164. Mahajan S, Tuteja N (2005) Cold, salinity and drought stress: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefGoogle Scholar
  165. Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243CrossRefGoogle Scholar
  166. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefGoogle Scholar
  167. Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660Google Scholar
  168. Martin S, Saco D, Alvarez M (1995) Nitrogen metabolism in Nicotiana rustica L. grown with molybdenium: 11. Flowering stage. Comm Soil Sci Plant Anal 26:1733–1747CrossRefGoogle Scholar
  169. Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S (1998) Chronic arsenic toxicity in West Bengal—the worst calamity in the world. J Indian Med Assoc 96:4–7PubMedGoogle Scholar
  170. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282PubMedCrossRefGoogle Scholar
  171. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agronomy 75:1–56CrossRefGoogle Scholar
  172. McKenna IM, Chaney RL (1991) Cadmium transfer to humans from food crops grown in sites contaminated with cadmium and zinc. In: Fechter LD (ed) Proceedings of 4th international conferences on combined effects of environmental factors; 1–3 Oct, 1990. Johns Hopkins University School of Hygiene and Public Health, Baltimore, pp 65–70Google Scholar
  173. Meerts P, van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231CrossRefGoogle Scholar
  174. Meharg AA (1993) The role of plasmalemma in metal tolerance in angiosperm. Physiol Plant 88:191–198CrossRefGoogle Scholar
  175. Mendel RR, Haensch R (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 53:1689–1698PubMedCrossRefGoogle Scholar
  176. Mengoni A, Gonnelli C, Galardi F, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Molecul Ecol 9:1319–1324CrossRefGoogle Scholar
  177. Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mat Res B 75:257–263CrossRefGoogle Scholar
  178. Miller GW, Haung IJ, Welkie GW, Pushnik JC (1995) Function of iron in the plants with special emphasis on chloroplast and photosynthetic activity. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, 19–28Google Scholar
  179. Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5PubMedCrossRefGoogle Scholar
  180. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefGoogle Scholar
  181. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefGoogle Scholar
  182. Mizuno D, Kawahara M (2013) The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci 14:22067–22081PubMedPubMedCentralCrossRefGoogle Scholar
  183. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants: salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  184. Momcilović B (1999) A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the Lucor metallicum family. Arh Hig Rada Toksikol 50:289–297PubMedGoogle Scholar
  185. Morais S, Garcia e Costa F, deLourdes Pereira M (2012) Heavy metals and human health, environmental health- emerging issues and practice. In: Prof. Jacques Oosthuizen (ed) ISBN: 978-953-307-854-0Google Scholar
  186. Morishita T, Fumoto N, Yoshizawa T, Kagawa K (1987) Varietal differences in cadmium levels of rice grains of Japonica, Indica, Javanica and hybrid varieties produced in the same plot of a field. Soil Sci Plant Nutr 33:629–637CrossRefGoogle Scholar
  187. Mudhoo A, Sharma SK, Garg VK, Tseng C-H (2011) Arsenic: an overview of applications, health, and environmental concerns and removal processes. Crit Rev Environ Sci Technol 41:435–519CrossRefGoogle Scholar
  188. Mukhopadhay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149CrossRefGoogle Scholar
  189. Müller T, Feichtinger H, Berger H, Müller W (1996) Endemic tyrolean cirrhosis: an ecogenetic disorder. Lancet 347:877–880PubMedCrossRefGoogle Scholar
  190. Murphy JV (1970) Intoxication following ingestion of elemental zinc. JAMA 212:2119–2120PubMedCrossRefGoogle Scholar
  191. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  192. Needleman HL, Landrigan PJ (1981) The health effects of low level exposure to lead. Annu Rev Public Health 2:277–298PubMedCrossRefGoogle Scholar
  193. Nordberg NF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200PubMedCrossRefGoogle Scholar
  194. Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ 1:66–75Google Scholar
  195. Oliveira Da Silva AL, Barrocas PRG, Do Couto Jacob S, Moreira JC (2005) Dietary intake and health effects of selected toxic elements. Braz J Plant Physiol 17:79–93CrossRefGoogle Scholar
  196. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Muller-Spahn F (2002) The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 113:849–855PubMedCrossRefGoogle Scholar
  197. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Plant Soil 184:105–126Google Scholar
  198. Padmavathiamma PK, Loretta L (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  199. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  200. Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6:497–501PubMedPubMedCentralCrossRefGoogle Scholar
  201. Pfab R, Muckter H, Roider G, Zilker T (1996) Clinical course of severe poisoning with thiomersal. J Toxicol Clin Toxicol 34:453–460PubMedCrossRefGoogle Scholar
  202. Pollard AJ, Baker AJM (1996) The quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytol 132:113–118CrossRefGoogle Scholar
  203. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:1–23CrossRefGoogle Scholar
  204. Porea TJ, Belmont JW, Jr Mahoney DH (2000) Zinc-induced anemia and neutropenia in an adolescent. J Pediat 136:688–690PubMedCrossRefGoogle Scholar
  205. Poschenrieder C, Barceló J (2004) Water relations in heavy metal stressed plants. In Prasad MNV (ed) Heavy metal stress in plants (3rd edn). Springer, Berlin, pp 249–270Google Scholar
  206. Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD (2004) The beneficial effect of amalgam replacement on health in patients with autoimmunity. Neuro Endocrinol Lett 25:211–218PubMedGoogle Scholar
  207. Punshon T, Dickinson N (1999) Heavy metal resistance and accumulation characteristics in willows. Intern J Phytoremed 1:361–385CrossRefGoogle Scholar
  208. Purdy JJ, Smart LB (2008) Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Intern J Phytoremed 10:515–528CrossRefGoogle Scholar
  209. Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181CrossRefGoogle Scholar
  210. Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404CrossRefGoogle Scholar
  211. Rao RV, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue Organ Cult 68:1–19CrossRefGoogle Scholar
  212. Rao KVM (2006) Introduction. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Netherlands, pp 1–14Google Scholar
  213. Rao MV, Chinoy NJ, Suthar MB, Rajvanshi MI (2001) Role of ascorbic acid on mercuric chloride-induced genotoxicity in human blood cultures. Toxicol In Vitro 15:649–654PubMedCrossRefGoogle Scholar
  214. Rascio N, Navari-Izzo F (2011) Heavy metal accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  215. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226PubMedCrossRefGoogle Scholar
  216. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  217. Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104PubMedCrossRefGoogle Scholar
  218. Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283CrossRefGoogle Scholar
  219. Ribeiro R, Lopes I (2013) Contaminant driven genetic erosion and associated hypotheses on alleles loss, reduced population growth rate and increased susceptibility to future stressors: an essay. Ecotoxicology 22:889–899PubMedPubMedCentralCrossRefGoogle Scholar
  220. Ribeiro R, Baird DJ, Soares AM, Lopes I (2012) Contaminant driven genetic erosion: a case study with Daphnia longispina. Environ Toxicol Chem 31:977–982PubMedCrossRefGoogle Scholar
  221. Richards T (2007) Guillain-Barre syndrome. Guillain-Barre syndrome fact sheet. National Institute of Neurological Disorders and Stroke, BethesdaGoogle Scholar
  222. Richau KH, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262CrossRefGoogle Scholar
  223. Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant, Cell Environ 20:600–608CrossRefGoogle Scholar
  224. Robert-Seilaniantz A, Bari R, Jones JDG (2010) Abiotic or biotic stresses. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp103–122Google Scholar
  225. Roosens N, Verbruggen N, Meerts P, Ziménez-Embún P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. New Phytol 26:1657–1672Google Scholar
  226. Ros R, Cooke DT, Martínez-Cortina C, Picazo I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. J Exp Bot 43:1475–1481CrossRefGoogle Scholar
  227. Rousseau MC, Parent ME, Nadon L, Latreille B, Siemiatycki J (2007) Occupational exposure to lead compounds and risk of cancer among men: a population-based case-control study. Amer J Epidemiol 166:1005–1014CrossRefGoogle Scholar
  228. Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–475CrossRefGoogle Scholar
  229. Santandrea G, Tani C, Bennici A (1998) Cytological and ultrastructural response of Nicotiana tabacum L. roots to manganese stress. Plant Biosyst 132:197–206CrossRefGoogle Scholar
  230. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedGoogle Scholar
  231. Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr (Cr3+) in celery seedlings. Chemosphere 64:1695–1703PubMedCrossRefGoogle Scholar
  232. Shakya K, Chettri MK, Sawidis T (2008) Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol 54:412–421PubMedCrossRefGoogle Scholar
  233. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  234. Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26:301–313PubMedGoogle Scholar
  235. Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68PubMedCrossRefGoogle Scholar
  236. Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh SP (2006) Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods Hum Nutr 61:23–28PubMedCrossRefGoogle Scholar
  237. Siddiqui MK, Srivastava S, Mehrotra PK (2002) Environmental exposure to lead as a risk for prostate cancer. Biomed Environ Sci 15:298–305PubMedGoogle Scholar
  238. Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance inplants. Environ Chem Lett 11:229–254CrossRefGoogle Scholar
  239. Sirkar S, Amin JV (1974) The manganese toxicity of cotton. Plant Physiol 54:539–543PubMedPubMedCentralCrossRefGoogle Scholar
  240. Słomka A, Sutkowska A, Szczepaniak M, Malec P, Mitka J, Kuta E (2011) Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments. Chemosphere 83:435–442PubMedCrossRefGoogle Scholar
  241. Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222Google Scholar
  242. Sorensen N, Murata K (1999) Prenatal methylmercury exposure as a cardiovascular risk factor at 7 years of age. Epidemiology 10:370–375PubMedCrossRefGoogle Scholar
  243. Spiller SC, Castelfranco AM, Castelfranco PA (1982) Effects of iron and oxygen on chlorophyll biosynthesis: I. In vivo observations on iron and oxygen deficient plants. Plant Physiol 69:107–111PubMedPubMedCentralCrossRefGoogle Scholar
  244. Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. J Plant Physiol 161:665–674PubMedCrossRefGoogle Scholar
  245. Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. J Biol Chem 266:2005–2008PubMedGoogle Scholar
  246. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public health and environmental exposure to cadmium (PheeCad) study group. Lancet 353:1140–1144PubMedCrossRefGoogle Scholar
  247. Stolt P, Asp H, Hultin S (2006) Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J Agron Crop Sci 192:201–208CrossRefGoogle Scholar
  248. Strehlow CD, Barltrop D (1988) The shipham report—an investigation into cadmium concentrations and its implications for human health: health studies. Sci Total Environ 75:101–133PubMedCrossRefGoogle Scholar
  249. Sun G (2004) Arsenic contamination and arsenicicosis in China. Toxicol Appl Pharmacol 198:268–271PubMedCrossRefGoogle Scholar
  250. Sunderman FW Jr, Dingle B, Hopfer SM, Swift T (1988) Acute nickel toxicity in electroplating workers who accidentally ingested a solution of nickel sulphate and nickel chloride. Am J Ind Med 14:257–266PubMedCrossRefGoogle Scholar
  251. Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk J Agr Forest 34:349–359Google Scholar
  252. Tay CH, Seah CS (1975) Arsenic poisoning from anti-asthmatic herbal preparations. Med J Aust 2:424–428PubMedGoogle Scholar
  253. Taylor SI, Macnair MR (2006) Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). New Phytol 169:505–514PubMedCrossRefGoogle Scholar
  254. Telisman S, Jurasovic J, Pizent A, Cvitkovic P (2001) Blood pressure in relation to biomarkers of lead, cadmium, copper, zinc, and selenium in men without occupational exposure to metals. Environ Res 87:57–68PubMedCrossRefGoogle Scholar
  255. Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryan-themum crystallium. Physiol Plant 102:360–368CrossRefGoogle Scholar
  256. Thompson JA, Nelson RL, Vodkin LO (1998) Identification of diverse soybean germplasm using RAPD markers. Crop Sci 38:1348–1355CrossRefGoogle Scholar
  257. Tisdale SL, Nelson WL, Beaten JD (1984) Zinc in soil fertility and fertilizers, 4th edn. Macmillan Publishing Company, New YorkGoogle Scholar
  258. Tower SS (2010a) Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J Bone Joint Surg Am 92:2847–2851PubMedCrossRefGoogle Scholar
  259. Tower SS (2010b) Arthroprosthetic cobaltism: identification of the at-risk patient. Alaska Med 52:28–32PubMedGoogle Scholar
  260. Uneyama C, Toda M, Yamamoto M, Morikawa K (2007) Arsenic in various foods: cumulative data. Food Addit Contam 24:447–534PubMedCrossRefGoogle Scholar
  261. Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A (2010) Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environ Pollut 158:1638–1643PubMedCrossRefGoogle Scholar
  262. Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nympaea alba L. Chemosphere 41:1075–1082PubMedCrossRefGoogle Scholar
  263. Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360CrossRefGoogle Scholar
  264. Van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant stressed populations: an evaluation of the ‘genetic erosion’ hypothesis. Hum Ecol Risk Assess 8:983–1002CrossRefGoogle Scholar
  265. van Wijngaarden E (2012) Lead exposure. Encyclopedia to cancer. Springer, BerlinGoogle Scholar
  266. Vekemans X, Lefèbvre C (1997) On the evolution of heavy metal tolerant populations in Armeria maritime: evidence from allozyme variation and reproduction barriers. J Evol Biol 10:175–191CrossRefGoogle Scholar
  267. Vidic T, Greilhuber J, Vilhar B, Dermastia M (2009) Selective significance of genome size in a plant community with heavy metal pollution. Ecol Appl 19:1515–1521PubMedCrossRefGoogle Scholar
  268. Vieira C, Morais S, Ramos S, Delerue-Matos C, Oliveira MBPP (2011) Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: intra- and inter-specific variability and human health risks for consumption. Food Chem Toxicol 49:923–932PubMedCrossRefGoogle Scholar
  269. Vimercati L, Santarelli L, Pesola G, Drago I, Lasorsa G, Valentino M, Vacca A, Soleo L (2001) Leukocytes in workers exposed to low levels of monocyte-macrophage system and polymorphonuclear metallic mercury. Sci Total Environ 270:157–163PubMedCrossRefGoogle Scholar
  270. Walton FS, Harmon AW, Paul DS, Drobna Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198:424–433PubMedCrossRefGoogle Scholar
  271. Wang J, Yuan J, Yang Z, Huang B, Zhou Y, Xin J, Gong Y, Yu H (2009) Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J Agric Food Chem 57:8942–8949PubMedCrossRefGoogle Scholar
  272. Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736PubMedCrossRefGoogle Scholar
  273. Wang S, Shi X, Sun H, Chen Y, Pan H (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS ONE 9:e108568PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  275. Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Amer J Physiol 251:R398–R408PubMedGoogle Scholar
  276. Weiss B (1996) Long ago and far away: a retrospective on the implications of Minamata. Neurotoxicology 17:257–263PubMedGoogle Scholar
  277. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401PubMedCrossRefGoogle Scholar
  278. WHO (1995) Lead. Environ Health Criteria, vol 165. World Health Organization, GenevaGoogle Scholar
  279. WHO (2004) Evaluation of certain food additives contaminants. Sixty-first report of the joint FAO/WHO expert committee on food additives. WHO technical report series, No. 922Google Scholar
  280. WHO (2006) Evaluation of certain food contaminants. Sixty-fourth report of the Joint FAO/WHO expert committee on food additives. WHO Technical Report Series, No. 930Google Scholar
  281. Wierzbicka M, Rostański A (2002) Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: a review. Acta Biologica Cracoviensia Series Botanica 44:7–19Google Scholar
  282. Wójcik M, Dresler S, Jawor E, Kowalczyk K, Tuiendorf A (2013) Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum 90:1249–1257Google Scholar
  283. Wu FY, Leung HM, Wu SC, Ye ZH, Wong MH (2009) Variation in arsenic, lead and zing tolerance and accumulation in six populations of Pteris vittata L. from China. Environ Pollut 157:2394–2404PubMedCrossRefGoogle Scholar
  284. Wu J, Schat H, Sun RF, Koornneef M, Wang XW, Aarts MGM (2007) Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil 291:167–180CrossRefGoogle Scholar
  285. Wu L, Bradshaw AD, Thurman DA (1975) The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostic stolonifera. Hereditas 34:165–187CrossRefGoogle Scholar
  286. Xu J, Ji LD, Xu LH (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166:160–167PubMedCrossRefGoogle Scholar
  287. Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  288. Yang WD, Chen YT (2008) Differences in uptake and tolerance to cadmium in varieties of Salix integra. Forest Res 6:857–861Google Scholar
  289. Yang YY, Jung JY, Song WY, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1102PubMedPubMedCentralCrossRefGoogle Scholar
  290. Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii Hance: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637CrossRefGoogle Scholar
  291. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  292. Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198:243–252PubMedCrossRefGoogle Scholar
  293. Young RA (2005) Toxicity profiles: toxicity summary for cadmium. Risk assessment information system, RAIS. University of Tennessee, KnoxvilleGoogle Scholar
  294. Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker LHA, McGrath SP (2004) Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytol 163:299–312CrossRefGoogle Scholar
  295. Zhang GP, Fukami M, Sekimoto H (2000) Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J Plant Nutr 23:1337–1350CrossRefGoogle Scholar
  296. Zhang K, Wang J, Yang Z, Xin G, Yuan J, Xin J, Huang C (2013) Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars. Front Envir Sci Eng 7:85–96CrossRefGoogle Scholar
  297. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857PubMedPubMedCentralCrossRefGoogle Scholar
  298. Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629PubMedPubMedCentralCrossRefGoogle Scholar
  299. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorganic Biochem 101:1–9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University Uttar Pradesh (Lucknow Campus)LucknowIndia

Personalised recommendations