Skip to main content

Antennas and Apertures in Earth Observation

  • Chapter
  • First Online:
Understanding Earth Observation

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 23))

  • 1726 Accesses

Abstract

Antennas [95, Chap. 3] and apertures [46] cover the dual role of receiving the wave carrying information on the observed target, as well as of acting as a source in case they are part of active systems.1 Passive instruments pick up either the solar radiation at ultraviolet, visible and near infrared wavelengths “reflected” in the sense seen in Sects. 9.3.1 and 10.2.1.1 by the observed portion of the Earth, or the thermal radiation which is spontaneously emitted by this latter in the infrared (Sect. 9.3.2) or at microwaves (Sect. 9.3.3). On their side, the active systems (Sect. 10.2.4) intercept a fraction of the power they have transmitted and that is carried back by the wave after interaction with the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Earth observing active systems include lidars and radars in various forms, named after their peculiar function, such as: profiling, imaging, altimeter, scatterometer.

  2. 2.

    Reciprocity relations can be used in general, since they have been established for electromagnetic fields with arbitrary time dependence [22, 91].

  3. 3.

    The source current \(\boldsymbol{J}_{\!\mathrm{s}}\) denotes any source of electromagnetic radiation, independently of its origin (be it natural or man-made), wavelength (optical or microwave) and nature, i.e., physically present or virtual.

  4. 4.

    The line represents a radio-frequency guiding structure such as waveguide, strip-line, or coaxial cable.

  5. 5.

    The basically different features of incoherent-detection optical systems are outlined in Sect. 11.4.2.2.

  6. 6.

    Being arbitrary, here the “horizontal” direction is assumed parallel to the linear elements of Fig. 11.4.

  7. 7.

    “Internal” here denotes the space inside the system between the transmitter (or the receiver considered in Sect. 11.2) and A g.

  8. 8.

    For instance, in a microwave system, \(\boldsymbol{E}_{\ell\mathrm{T}}\) can be the field carried by the dominant mode of a waveguide.

  9. 9.

    In the microwave case to which Fig. 11.1 refers, η  ≡ η z, that is, it coincides with the wave impedance of the dominant mode in the guiding structure, while η  ≡ η 0, the intrinsic impedance of vacuum (4.35), for the free-space propagation inside the telescope optics of Fig. 11.2.

  10. 10.

    Alternatively, but less effectively in the present context, the currents could be those actually flowing on the physical structure, for instance those on the reflecting parabolic conducting surface of Fig. 11.1 or on the array elements of Fig. 11.4.

  11. 11.

    In practice, the accuracy of this serviceable assumption depends on the kind of system and on the band of operation.

  12. 12.

    Actually, the external field propagates perpendicularly to the equiphase plane in correspondence of A g; for simplicity, here the plane of A g is assumed equiphase.

  13. 13.

    The power radiated by the antenna coincides with the power delivered by the source when the structure is lossless.

  14. 14.

    The present radial coordinate r in the antenna reference system should not be confused with the distance from the antenna; similarly, the polar angle \(\vartheta\) must be kept distinct from the off-nadir angle.

  15. 15.

    Systems are frequently encountered that steer the beam (electronically or mechanically), i.e., vary the aperture boresight by tilting the equiphase surface of E 0T.

  16. 16.

    Linear polarization is assumed; complex \(\boldsymbol{\mathfrak{e}}_{0}\) are needed for circular or elliptical polarizations.

  17. 17.

    The neglected phase factor here is inessential.

  18. 18.

    It means that the direction of propagation of the arriving field must be reversed, making it to propagate back from the point where the receiver or the detector is located towards the external space, through any microwave component or optical element actually traversed by the incident field.

  19. 19.

    Once again, attention is called onto the normalizing effect of the denominator of (11.19), which makes the received power independent of the magnitude of the virtually transmitted field.

  20. 20.

    An exception is represented by the ionosphere at the lower microwave frequencies.

  21. 21.

    Airborne SARs have notoriously operated since several decades and systems are also in use on RPAPs.

  22. 22.

    The imaginary unit factor in (11.25), which refers to the absolute phase of the field, is also disregarded.

  23. 23.

    For the time being, receiving systems called diffraction-limited are considered; Sect. 11.4.2.2 looks at optical sensors with alternative properties.

  24. 24.

    This means that the incident waves arrive from a narrow angular range about the axis of the aperture.

  25. 25.

    Note that different conventions can be adopted.

  26. 26.

    As said, in case of optical sensors the result holds for diffraction-limited systems.

  27. 27.

    Also called antenna beam width .

  28. 28.

    The subscriptdl is suitable to distinguish the diffraction-limited angular resolution considered here from the optics-limited field of view outlined in Sect. 11.4.2.2.

  29. 29.

    As observed, identifying horizontal and vertical directions presupposes a target (e.g., Earth) reference.

  30. 30.

    Aperture field tapering entails η A < 1.

  31. 31.

    Different (and possibly inconsistent) terms are found denoting spatial resolution. Just as an example, [108] use “coarse resolution” for pixels larger than 100 m, “medium” for dimensions between 10 and 100 m, and “high” for a resolution equal to or finer than 10 m, while [43] introduce the following nomenclature for TIR pixel size: “ultra-fine” resolution for pixel sizes of less than 1 m, “very fine” fo sizes of 1–5 m, “fine” for 5–15 m, “medium” for 15–100 m, and “coarse resolution” for pixel sizes greater than 100 m.

  32. 32.

    Ground-Resolved Distance (GRD) is an alternative parameter frequently used.

  33. 33.

    The aperture axis is understood to coincide with the pointing direction of the beam.

  34. 34.

    To simplify the notations, average is not indicated, but it is implied when measuring solar radiation or the Earth’s thermal emission.

  35. 35.

    Reflection can be considered a particular (coherent) case of scattering.

  36. 36.

    It should be remembered that the emissivity depends on polarization according to the basic results throughout Chap. 8, and that usually T S is an equivalent temperature.

  37. 37.

    The reciprocity approach replaces receiving devices with virtually transmitting ones, keeping phase features.

  38. 38.

    In practice, the IFOV angle is generally determined by the field stops forming the instrument optics.

  39. 39.

    The effective area A e includes the spectral response for each instrument channel “centred” on \(\lambda _{\mathrm{c}}\).

  40. 40.

    As usual, the aperture boresight is assumed to be the system pointing direction.

  41. 41.

    The target is assumed to be in the direction of the antenna boresight.

  42. 42.

    Accurate analysis actually requires considering the point spreead function [12, 34] of the system.

  43. 43.

    Different angular discrimination criteria may be found.

  44. 44.

    The radar system scans the region of atmosphere to be monitored by changing the direction of the antenna boresight with time, either mechanically or electrically, in a known fashion.

  45. 45.

    Also aerosol particles in lidar observation.

  46. 46.

    Substantially analogous alternative definitions can be found.

  47. 47.

    The difference between ground range , that is along the reference earth surface, and slant range , i.e., along the satellite-to ground path, should be well kept in mind.

  48. 48.

    The limitation in spatial resolution set by the distance R in (11.43) is clearly mitigated when the observations are carried out from aerial platforms.

  49. 49.

    Practical reasons related to the processing time lead to a synthesis technique exploiting the Doppler frequency shift of the received scattered field.

  50. 50.

    Enhanced spatial resolution may require particular observing techniques, such as the spotlight mode.

  51. 51.

    The formalism is readily extended to airborne platforms.

  52. 52.

    Atmospheric extinction is neglected here.

  53. 53.

    The theoretical limit d a = a (Fig. 11.27) is overcome by suitable synthesis processing.

References

  1. Abramowitz M, Stegun IA (2012) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover. ISBN:9780486158242

    Google Scholar 

  2. Atlas D (ed) (1990) Radar in meteorology. American Meteorological Society. ISBN:9780933876866

    Google Scholar 

  3. Ausherman DA, Kozma A, Walker JL, Jones HM, Poggio EC (1984) Developments in radar imaging. IEEE Trans Aerosp Electron Syst 20(4):363–400. doi:10.1109/TAES.1984.4502060

    Article  Google Scholar 

  4. Baars JWM (2007) The paraboloidal reflector antenna in radio astronomy and communication: theory and practice. Springer. ISBN:9780387697345

    Google Scholar 

  5. Babichenko S, Poryvkina L, Arikese V, Kaitala S, Kuosa H (1993) Remote sensing of phytoplankton using laser-induced fluorescence. Remote Sens Environ 45(1):43–50. doi:10.1016/0034-4257(93)90080-H

    Article  Google Scholar 

  6. Bakshi AV, Bakshi UA (2008) Transmission lines and waveguides. Technical Publications. ISBN:9788184314298

    Google Scholar 

  7. Balanis CA (2007) Antenna theory: analysis and design. Wiley. ISBN:9788126513932

    Google Scholar 

  8. Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54(2–3):199–214. doi:http://dx.doi.org/10.1016/S0924-2716(99)00015-5

    Google Scholar 

  9. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14(4):R1–R54. doi:10.1088/0266-5611/14/4/001

    Article  Google Scholar 

  10. Basic Radar Altimetry Toolbox (BRAT). ESA. https://earth.esa.int/web/guest/software-tools/content/-/article/basic-radar-altimetry-toolbox-brat-5040. Visited on 31 Aug 2014

  11. Bely PY (2003) The design and construction of large optical telescopes. Springer. ISBN:9780387955124

    Google Scholar 

  12. Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. CRC. ISBN:9781439822067

    Book  Google Scholar 

  13. Born GH, Dunne JA, Lame DB (1979) Seasat mission overview. Science 204(4400):1405–1406. doi:10.1126/science.204.4400.1405

    Article  Google Scholar 

  14. Born M, Wolf E, Bhatia AB (2002) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press. ISBN:9781139643405

    Google Scholar 

  15. Bracewell RN (1995) Two-dimensional imaging. Prentice Hall. ISBN:9780130626219

    Google Scholar 

  16. Bracewell RN (2000) The Fourier transform and its applications. McGraw-Hill. ISBN:9780073039381

    Google Scholar 

  17. Bracewell R (2003) Fourier analysis and imaging. Springer. ISBN:9780306481871

    Book  Google Scholar 

  18. Capece P (2009) Active SAR antennas: design, development, and current programs. Int J Antennas Propag. Article ID 796064. doi:10.1155/2009/796064

    Google Scholar 

  19. Carrara WG, Goodman RS, Majewski RM (1995) Spotlight synthetic aperture radar: signal processing algorithms. Artech House. ISBN:9780890067284

    Google Scholar 

  20. Cecchi G, Pantani L, Raimondi V, Tomaselli L, Lamenti G, Tiano P, Chiari R (2000) Fluorescence lidar technique for the remote sensing of stone monuments. J Cult Herit 1(1):29–36. doi:10.1016/S1296-2074(99)00120-X

    Article  Google Scholar 

  21. Chen CL (2006) Foundations for guided-wave optics. Wiley. ISBN:9780470042212

    Book  Google Scholar 

  22. Cheo B (1965) A reciprocity theorem for electromagnetic fields with general time dependence. IEEE Trans Antennas Propag 13(2):278–284. doi:10.1109/TAP.1965.1138400

    Article  Google Scholar 

  23. Collin RE (1991) Field theory of guided waves. IEEE. ISBN:9780198592136

    Google Scholar 

  24. Collin RE, Zucker FJ (1969) Antenna theory, Parts 1–2. McGraw-Hill. ISBN:9780070117990

    Google Scholar 

  25. Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley. ISBN:9780471857709

    Google Scholar 

  26. Cutrona LJ (1970) Synthetic aperture radar. In: Skolnik MI (ed) Radar handbook. McGraw-Hill. ISBN:9780071485470

    Google Scholar 

  27. De Hoop AT (1968) A reciprocity relation between the transmitting and the receiving properties of an antenna. Appl Sci Res 19(1):90–96. doi:10.1007/BF00383914

    Article  Google Scholar 

  28. de Hoop AT, de Jong G (1974) Power reciprocity in antenna theory. Proc Inst Electr Eng 121(10):1051–1056. doi:10.1049/piee.1974.0247

    Article  Google Scholar 

  29. DigitalGlobe. http://www.digitalglobe.com/about-us/content-collection{#}overview;-https://www.digitalglobe.com/30cm/. Visited on 20 May 2015

  30. Drabowitch S, Papiernik A, Griffiths H, Encinas J, Smith BL (2005) Modern antennas. Springer. ISBN:9781402032165

    Book  Google Scholar 

  31. Dubois-Fernandez PC, Souyris J-C, Angelliaume S, Garestier F (2008) The compact polarimetry alternative for spaceborne SAR at low frequency. IEEE Trans Geosci Remote Sens 46(10):3208–3222. doi:10.1109/TGRS.2008.919143

    Article  Google Scholar 

  32. Elachi C (1987) Spaceborne radar remote sensing: applications and techniques. IEEE. ISBN:9780879422417

    Google Scholar 

  33. Elachi C, Brown WE, Cimino JB, Dixon T, Evans DL, Ford JP, Saunders RS, Breed C, Masursky H, McCauley JF, Schaber G, Dellwig L, England A, MacDonald H, Martin-Kaye P, Sabins F (1982) Shuttle imaging radar experiment. Science 218(4576):996–1003. doi:10.1126/science. 218.4576.996

    Article  Google Scholar 

  34. Ender JHG (2011) Introduction to radar – Part I. Ruhr-Universität Bochum, Scriptum of a Lecture. http://www.ei.rub.de/media/ei/lehrmaterialien/39/a715b063167d904ec4a9a5cea2a1a54d4defc115/RuhrUniScriptum.pdf. Visited on 04 July 2014

  35. Estes JE (ed) (1983) Interpretation and applications, vol 2 of Manual of remote sensing Colwell RN (ed). American Society of Photogrammetry. ISBN:9780937294420

    Google Scholar 

  36. Everaerts J (2008) The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, Beijing, vol XXXVII, pp 1187–1191

    Google Scholar 

  37. Fiorani L, Colao F (eds) (2008) Laser applications in environmental monitoring. Nova. ISBN:9781604562491

    Google Scholar 

  38. Fornaro G, Pascazio V (2013) SAR interferometry and tomography: theory and applications. In: Chellappa R, Theodoridis S (eds) Communications and radar signal processing. Academic press library in signal processing, vol 2. Academic. ISBN:9780123972248

    Google Scholar 

  39. Freeman A (1992) SAR calibration: an overview. IEEE Trans Geosci Remote Sens 30(6):1107–1121. doi:10.1109/36.193786

    Article  Google Scholar 

  40. Fu LL, Cazenave A (2000) Satellite altimetry and Earth sciences: a handbook of techniques and applications. Elsevier. ISBN:9780080516585

    Google Scholar 

  41. Galati G (2015) 100 years of radar. Springer. ISBN:9783319005836

    Google Scholar 

  42. Goodman JW (2005) Introduction to Fourier optics. McGraw-Hill. ISBN:9780974707723

    Google Scholar 

  43. Handcock RN, Torgersen CE, Cherkauer KA, Gillespie AR, Tockner K, Faux RN, Tan J (2012) Thermal infrared remote sensing of water temperature in riverine landscapes. In: Carbonneau P, Piégay H (eds) Fluvial remote sensing for science and management. Wiley. ISBN:9781119940784

    Google Scholar 

  44. Hansen RC (2009) Phased array antennas. Wiley. ISBN:9780470529171

    Book  Google Scholar 

  45. Harra LK, Mason KO (eds) (2004) Space science. Imperial College Press. ISBN:9781860943614

    Google Scholar 

  46. Hemmati H (ed) (2006) Deep space optical communications. Wiley. ISBN:9780470042403

    Google Scholar 

  47. Heritage G, Large A (2009) Laser scanning for the environmental sciences. Wiley. ISBN:9781444311945

    Book  Google Scholar 

  48. Hinkley ED (1976) Laser monitoring of the atmosphere. Springer. ISBN:9783540077435

    Book  Google Scholar 

  49. Jakowatz C Jr, Wahl D, Eichel P, Ghiglia D, Thompson P (1996) Spotlight-mode synthetic aperture radar: a signal processing approach. Kluwer. ISBN:9780792396772

    Book  Google Scholar 

  50. Jin YQ, Xu F (2013) Polarimetric scattering and SAR information retrieval. Wiley. ISBN:9781118188163

    Book  Google Scholar 

  51. Johnson RC, Jasik H (1993) Antenna engineering handbook. McGraw-Hill. ISBN:9780070323810

    Google Scholar 

  52. Kalmykov AI, Velichko SA, Tsymbal VN, Kuleshov Yu A, Weinman JA, Jurkevich I (1993) Observations of the marine environment from spaceborne side-looking real aperture radars. Remote Sens Environ 45(2):193–208. doi:10.1016/0034-4257(93)90042-V

    Article  Google Scholar 

  53. Kerr Y, Waldteufel P, Wigneron J-P, Cabot F, Boutin J, Escorihuela M-J, Font J, Reul N, Gruhier C, Juglea S, Delwart S, Drinkwater M, Hahne A, Martin-Neira M, Mecklenburg S (2010) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687. doi:10.1109/JPROC.2010.2043032

    Article  Google Scholar 

  54. Keydel W (2004) Present and future airborne and space-borne systems. NATO lecture series on radar polarimetry and interferometry RTO-EN-SET-081

    Google Scholar 

  55. Killinger DK, Menyuk N (1987) Laser remote sensing of the atmosphere. Science 235(4784):37–45. doi:10.1126/science.235.4784.37

    Article  Google Scholar 

  56. Kingsley S, Quegan S (1999) Understanding radar systems. SciTech. ISBN:9781891121050

    Book  Google Scholar 

  57. Ko HC (1962) On the reception of quasi-monochromatic, partially polarized radio waves. Proc IRE 50(9):1950–1957. doi:10.1109/JRPROC.1962.288174

    Article  Google Scholar 

  58. Kovaly JJ (1976) Synthetic aperture radar. Artech House. ISBN:9780890060568

    Google Scholar 

  59. Kraus JD, Marhefka RJ (2002) Antennas for all applications. McGraw-Hill. ISBN:9780072321036

    Google Scholar 

  60. Kraus JD, Marhefka RJ, Khan AS (2006) Antennas and wave propagation. McGraw-Hill. ISBN:9780070671553

    Google Scholar 

  61. Landsat Science. NASA. http://landsat.gsfc.nasa.gov/. Visited on 07 Mar 2014

  62. Ludwig A (1973) The definition of cross polarization. IEEE Trans Antennas Propag 21(1):116–119. doi:10.1109/TAP.1973.1140406

    Article  Google Scholar 

  63. Marcuvitz N (1951) Waveguide handbook. McGraw-Hill. ISBN:9780863410581

    Google Scholar 

  64. Martín-Neira M, Goutoule JM (1997) A two-dimensional aperture-synthesis radiometer for soil moisture and ocean salinity observations. ESA Bull 92:95–104

    Google Scholar 

  65. Martín-Neira M, Menard Y, Goutoule J, Kraft U (1994) MIRAS, a two-dimensional aperture synthesis radiometer. In: Geoscience and remote sensing symposium, IGARSS’94. Surface and atmospheric remote sensing: technologies, data analysis and interpretation, international, vol 3, pp 1323–1325. doi:10.1109/IGARSS.1994.399429

    Google Scholar 

  66. Measures RM (1984) Laser remote sensing: fundamentals and applications. Wiley. ISBN:9780471081937

    Google Scholar 

  67. MODIS Web. NASA. http://modis.gsfc.nasa.gov/. Visited on 07 Mar 2014

  68. Neiman MS (1943) The principle of reciprocity in antenna theory. Proc IRE 31(12):666–671. doi:10.1109/JRPROC.1943.233683

    Article  Google Scholar 

  69. Nest – Next ESA SAR toolbox. ESA. https://earth.esa.int/web/nest/downloads. Visited on 14 Sept 2014

  70. Nord ME, Ainsworth TL, Lee J-S, Stacy NJS (2009) Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans Geosci Remote Sens 47(1):174–188. doi:10.1109/TGRS.2008.2000925

    Article  Google Scholar 

  71. Park H, Kim Y-H (2009) Microwave motion-induced synthetic aperture radiometer using sparse array. Radio Sci 44(3). doi:10.1029/2008RS003998

    Google Scholar 

  72. Radar Altimetry Tutorial. ESA. http://earth.eo.esa.int/brat/html/alti/welcome_en.html. Visited on 31 Aug 2014

  73. Raimondi V, Cecchi G, Lognoli D, Palombi L, Grönlund R, Johansson A, Svanberg S, Barup K, Hällström J (2009) The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of in situ experiments. Int Biodeterior Biodegrad 63(7):823–835. doi:10.1016/j.ibiod.2009.03.006

    Article  Google Scholar 

  74. Ramo S, Whinnery JR, Van Duzer T (1965) Fields and waves in communication electronics. Wiley. ISBN:9780471585510

    Google Scholar 

  75. Raney RK (2007) Hybrid-polarity SAR architecture. IEEE Trans Geosci Remote Sens 45(11):3397–3404. doi:10.1109/TGRS.2007.895883

    Article  Google Scholar 

  76. Reigber A, Moreira A (2000) First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 38(5):2142–2152. doi:10.1109/36.868873

    Article  Google Scholar 

  77. Richards JA (2009) Remote sensing with imaging radar. Springer. ISBN:9783642020209

    Book  Google Scholar 

  78. Richards MA, Scheer JA, Holm WA (eds) (2010) Principles of modern radar: basic principles, vol 1. SciTech. ISBN:9781891121524

    Google Scholar 

  79. Robinson IS (2004) Measuring the oceans from space: the principles and methods of satellite oceanography. Springer. ISBN:9783540426479

    Google Scholar 

  80. Robinson JA, Amsbury DL, Liddle DA, Evans CA (2002) Astronaut-acquired orbital photographs as digital data for remote sensing: spatial resolution. Int J Remote Sens 23(20):4403–4438. doi:10.1080/01431160412331317775

    Article  Google Scholar 

  81. Ruf CS, Swift CT, Tanner AB, Le Vine DM (1988) Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans Geosci Remote Sens 26(5):597–611. doi:10.1109/36.7685

    Article  Google Scholar 

  82. Rusch WVT, Potter PD (1970) Analysis of reflector antennas. Academic. ISBN:9780126034509

    Google Scholar 

  83. Shan J, Toth CK (eds) (2008) Topographic laser ranging and scanning: principles and processing. Taylor & Francis. ISBN:9781420051438

    Google Scholar 

  84. Siegman AE (1967) A maximum-signal theorem for the spatially coherent detection of scattered radiation. IEEE Trans Antennas Propag 15(1):192–194. doi:10.1109/TAP.1967.1138845

    Article  Google Scholar 

  85. Siegman AE (1966) The antenna properties of optical heterodyne receivers. Appl Opt 1(5):1588–1594. doi:10.1364/AO.5.001588

    Article  Google Scholar 

  86. Siegman AE (1986) Lasers. University Science Books. ISBN:9780935702118

    Google Scholar 

  87. Silvestrin P, Berger M, Kerr YH, Font J (2001) ESA’s second Earth explorer opportunity mission: the soil moisture and ocean salinity mission – SMOS. IEEE Geosci Remote Sens Soc Newsl 118. ISSN:0161–7869

    Google Scholar 

  88. Simonett DS, Colwell RN (eds) (1983) Manual of remote sensing, vol 1: theory, instruments and techniques. American Society of Photogrammetry. ISBN:9780937294413

    Google Scholar 

  89. Skolnik MI (2003) Introduction to radar systems. McGraw Hill. ISBN:9780070445338

    Google Scholar 

  90. Skolnik M (ed) (2008) Radar handbook. McGraw-Hill. ISBN:9780071485470

    Google Scholar 

  91. Smith GS (2004) A direct derivation of a single-antenna reciprocity relation for the time domain. IEEE Trans Antennas Propag 52(6):1568–1577. doi:10.1109/TAP.2004.830257

    Article  Google Scholar 

  92. Souissi B, Ouarzeddine M, Belhadj-Aissa A (2012) Investigation of the capability of the compact polarimetry mode to reconstruct full polarimetry mode using RADARSAT2 data. Adv Electromagn 1(1). doi:10.7716/aem.v1i1.12

    Google Scholar 

  93. Steinberg BD (1976) Principles of aperture and array system design: including random and adaptive arrays. Wiley. ISBN:9780471821021

    Google Scholar 

  94. The ERS Satellites. Delft University of Technology, DEOS. http://www.deos.tudelft.nl/ers/ers1info.html. Visited on 06 Mar 2014

  95. Ulaby FT, Moore RK, Fung AK (1981) Microwave remote sensing fundamentals and radiometry. Microwave remote sensing: active and passive, vol 1. Addison-Wesley. ISBN:9780890061909

    Google Scholar 

  96. Ulaby FT, Moore RK, Fung AK (1982) Radar remote sensing and surface scattering and emission theory. Microwave remote sensing: active and passive, vol 2. Addison-Wesley. ISBN:9780890061916

    Google Scholar 

  97. Ulaby FT, Moore RK, Fung AK (1986) From theory to applications. Microwave remote sensing: active and passive, vol 3. Artech House. ISBN:9780890061923

    Google Scholar 

  98. Urkowitz H, Hauer CA, Koval JF (1962) Generalized resolution in radar systems. Proc IRE 50(10):2093–2105. doi:10.1109/JRPROC.1962.288247

    Article  Google Scholar 

  99. van Zyl JJ (2011) Synthetic aperture radar polarimetry. Wiley. ISBN:9781118116098

    Google Scholar 

  100. Visser HJ (2006) Array and phased array antenna basics. Wiley. ISBN:9780470871188

    Google Scholar 

  101. Waite AH, Schmidt SJ (1962) Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Proc IRE 50(6):1515–1520. doi:10.1109/JRPROC.1962.288195

    Article  Google Scholar 

  102. Wang CW, Keech T (2012) Antenna models for electromagnetic compatibility analyses. NTIA Technical Memorandum NTIA TM-13-489. http://www.ntia.doc.gov/files/ntia/publications/antenna_models_report_tm-13-489.pdf. Visited on 19 Feb 2014

  103. Wang C-K, Philpot WD (2007) Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sens Environ 106(1):123–135. doi:10.1016/j.rse.2006.08.003

    Article  Google Scholar 

  104. Watson RC Jr (2009) Radar origins worldwide: history of its evolution in 13 nations through World War II. Trafford Publishing, UK. ISBN:9781426921117

    Google Scholar 

  105. Watts AC, Ambrosia VG, Hinkley EA (2012) Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens 4(6):1671–1692. doi:10.3390/rs4061671, http://www.mdpi.com/2072-4292/4/6/1671

    Article  Google Scholar 

  106. Wehr A, Lohr U (1999) Airborne laser scanning – an introduction and overview. ISPRS J Photogramm Remote Sens 54(2):68–82. doi:doi:10.1016/S0924-2716(99)00011-8

    Google Scholar 

  107. Weitkamp C (ed) (2005) Lidar: range-resolved optical remote sensing of the atmosphere. Springer. ISBN:9780387400754

    Google Scholar 

  108. Weng Q, Gamba P, Mountrakis G, Pesaresi M, Lu L, Kemper T, Heinzel J, Xian G, Jin H, Miyazaki H, Xu B, Quresh S, Keramitsoglou I, Ban Y, Esch T, Roth A, Elvidge CD (2014) Urban observing sensors. In: Weng Q (ed) Global urban monitoring and assessment through earth observation. CRC. ISBN:9781466564497

    Chapter  Google Scholar 

  109. Wolff C (1996) Radartutorial.eu. http://www.radartutorial.eu/index.en.html. Visited on 10 Sept 2014

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solimini, D. (2016). Antennas and Apertures in Earth Observation. In: Understanding Earth Observation. Remote Sensing and Digital Image Processing, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-25633-7_11

Download citation

Publish with us

Policies and ethics