Skip to main content

Resource Allocation in Heterogeneous Vehicular Networks

  • Chapter
  • First Online:
  • 515 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Vehicular networks are facing an overwhelming growth in data traffic demands recently. However, radio resources in wireless networks infrastructures have not been fully exploited, resulting in low quality of services for vehicle users. As a result, efficient radio resource allocation schemes for HetVNETs are in urgent demand. In this chapter, we first present a brief overview on radio resource allocation in vehicular networks. Then, Sect. 4.2 presents a new content-based resource scheduling mechanism. A Bipartite graph (BG)-based cooperative scheduling scheme is also studied in Sect. 4.3, followed by concluding remarks of the chapter in Sect. 4.4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Commun., vol. 18, no. 3, pp. 10–21, Jun. 2011.

    Article  Google Scholar 

  2. J. Ghimire and C. Rosenberg, “Resource allocation, transmission coordination and user association in heterogeneous networks: A flow-based unified approach,” IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 1340–1351, Mar. 2013.

    Article  Google Scholar 

  3. M. Gerasimenko, D. Moltchanov, R. Florea, S. Andreev, Y. Koucheryavy, N. Himayat, S.-P. Yeh, and S. Talwar, “Cooperative radio resource management in heterogeneous cloud radio access networks,” IEEE Access, vol. 3, pp. 397–406, 2015.

    Article  Google Scholar 

  4. S.-T. Cheng, G.-J. Horng, and C.-L. Chou, “Using cellular automata to form car society in vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1374–1384, Jun. 2011.

    Article  Google Scholar 

  5. C. E. Palazzi, M. Roccetti, and S. Ferretti, “An intervehicular communication architecture for safety and entertainment,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 90–99, Mar. 2010.

    Article  Google Scholar 

  6. H. Ilhan, I. Altunbas, and M. Uysal, “Cooperative diversity for relay-assisted inter-vehicular communication,” in Proc. IEEE Vehicular Technology Conference (VTC), Singapore, May. 2008, pp. 605–609.

    Google Scholar 

  7. I. Krikidis, J. Thompson, and N. Goertz, “A cross-layer approach for cooperative networks,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 3257–3263, Sep. 2008.

    Article  Google Scholar 

  8. Z. Ding and K. Leung, “Cross-layer routing using cooperative transmission in vehicular ad-hoc networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 3, pp. 571–581, Mar. 2011.

    Article  Google Scholar 

  9. W. Saad, Z. Han, A. Hjorungnes, D. Niyato, and E. Hossain, “Coalition formation games for distributed cooperation among roadside units in vehicular networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 1, pp. 48–60, January 2011.

    Article  Google Scholar 

  10. M. Pan, P. Li, and Y. Fang, “Cooperative communication aware link scheduling for cognitive vehicular networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 4, pp. 760–768, May 2012.

    Article  Google Scholar 

  11. J. Zhang, Q. Zhang, and W. Jia, “VC-MAC: A cooperative mac protocol in vehicular networks,” IEEE Trans. Veh. Technol., vol. 58, no. 3, pp. 1561–1571, Mar. 2009.

    Article  Google Scholar 

  12. T.-D. Nguyen, O. Berder, and O. Sentieys, “Energy-efficient cooperative techniques for infrastructure-to-vehicle communications,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3, pp. 659–668, Sep. 2011.

    Article  Google Scholar 

  13. G. Remy, S.-M. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X - impact of high mobility in highway scenarios,” in Proc. Global Information Infrastructure Symposium (GIIS), Da Nang, Aug. 2011, pp. 1–7.

    Google Scholar 

  14. E. Yaacoub and N. Zorba, “Enhanced connectivity in vehicular ad-hoc networks via V2V communications,” in Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Jul. 2013, pp. 1654–1659.

    Google Scholar 

  15. S.-Y. Pyun, D.-H. Cho, and J.-W. Son, “Downlink resource allocation scheme for smart antenna based V2V2I communication system,” in Proc. IEEE Vehicular Technology Conference (VTC), San Francisco, CA, 2011, pp. 1–6.

    Google Scholar 

  16. Q. Wang, P. Fan, and K. Letaief, “On the joint V2I and V2V scheduling for cooperative VANETs with network coding,” IEEE Trans. Veh. Technol., vol. 61, no. 1, pp. 62–73, Jan. 2012.

    Article  Google Scholar 

  17. X. Xin, K. Zheng, F. Liu, H. Long, and Z. Jiang, “An efficient resource allocation scheme for vehicle-to-infrastructure communications,” in Proc. International ICST Conference on Communications and Networking in China (CHINACOM), Guilin, Aug 2013, pp. 40–45.

    Google Scholar 

  18. L. Kleinrock, Queueing systems, volume I: theory. Hoboken, New Jersey: John Wiley & Sons, 1975.

    MATH  Google Scholar 

  19. Q. Wang, S. Leng, H. Fu, and Y. Zhang, “An IEEE 802.11p-based multichannel MAC scheme with channel coordination for vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 449–458, Jun. 2012.

    Article  Google Scholar 

  20. F. P. Kelly, Reversibility and stochastic networks. Cambridge, England: Cambridge University Press, 2011.

    MATH  Google Scholar 

  21. S. N. M. Sakata and J. Oizumi, “Analysis of a processor shared queueing model for time sharing systems,” in Proc. 2nd Hawaii International Conference on System Sciences, Jan. 1969, pp. 625–628.

    Google Scholar 

  22. M. Sakata, S. Noguchi, and J. Oizumi, “An analysis of the M/G/1 queue under round-robin scheduling,” Operations Research, vol. 19, no. 2, pp. 371–385, 1971.

    Article  MATH  Google Scholar 

  23. K. Zheng, F. Liu, Q. Zheng, W. Xiang, and W. Wang, “A graph-based cooperative scheduling scheme for vehicular networks,” IEEE Trans. Veh. Technol., vol. 62, no. 4, pp. 1450–1458, May. 2013.

    Google Scholar 

  24. J. Janssen, K. Kilakos, and O. Marcotte, “Fixed preference channel assignment for cellular telephone systems,” IEEE Trans. Veh. Technol., vol. 48, no. 2, pp. 533–541, Mar. 1999.

    Article  Google Scholar 

  25. S. H. S. Y. Chen, N. Han and J. M. Kim, “Dynamic frequency allocation based on graph coloring and local bargaining for multi-cell WRAN system,” in Proc. Asia-Pacific Conference on Communications (APCC), Busan, Aug. 2006, pp. 1–5.

    Google Scholar 

  26. J. Z. Yu Jung Chang, Zhifeng Tao and C. Kuo, “A graph-based approach to multi-cell OFDMA downlink resource allocation,” in IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, LO, Nov. 2008, pp. 1–6.

    Google Scholar 

  27. K. Zheng, Y. Wang, C. Lin, X. Shen, and J. Wang, “Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access femtocell networks,” IET Commun., vol. 5, no. 17, pp. 2533–2541, Nov. 2011.

    Article  MathSciNet  Google Scholar 

  28. H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistic Quarterly, vol. 2, no. 1–2, pp. 83–97, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Knuth, The art of computer programming. Boston: Addison-Wesley Professional, Mar. 2011.

    Google Scholar 

  30. “Evolved universal terrestrial radio access (E-UTRA); further advancements for e-utra physical layer aspects (release 9),” Tech. Rep. 36.814 V9.0.0, Mar. 2010.

    Google Scholar 

  31. “IEEE Standard for Information Technology– Local and Metropolitan Area Networks– Specific Requirements– Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,” IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), pp. 1–51, Jul. 2010.

    Google Scholar 

  32. J. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Krauß, “Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics,” Ph.D. dissertation, Universitat zu Koln., 1998.

    Google Scholar 

  34. L. Cheng, Henty, Benjamin, Stancil, D. D., F. Bai, and P. Mudalige, “A fully mobile, GPS enabled, vehicle-to-vehicle measurement platform for characterization of the 5.9 GHz DSRC channel,” in Proc. IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, Jun. 2007, pp. 2005–2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Zheng, K., Zhang, L., Xiang, W., Wang, W. (2016). Resource Allocation in Heterogeneous Vehicular Networks. In: Heterogeneous Vehicular Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25622-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25622-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25620-7

  • Online ISBN: 978-3-319-25622-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics