Skip to main content

Architecture of Heterogeneous Vehicular Networks

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Due to the high mobility of vehicles and the dynamic topology changes of Vehicular Ad hoc NETwork (VANET), it is difficult to provide satisfied ITS services only through a single wireless network. Consequently, by integrating different wireless access networks such as LTE and DSRC, the HetVNET is expected to be a good platform that can meet various demanding communications requirements of ITS services. In this chapter, we first present a framework of the HetVNET [1]. Several HetVNET candidate communications techniques are then discussed for comparison purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Zhou, “Heterogeneous vehicular networking: A survey on architecture, challenges and solutions,” IEEE Commun. Surveys Tuts., vol. PP, no. 99, pp. 1–1, 2015, DOI: 10.1109/COMST.2015.2440103.

    Google Scholar 

  2. R. Atat, E. Yaacoub, M.-S. Alouini, and F. Filali, “Delay efficient cooperation in public safety vehicular networks using LTE and IEEE 802.11p,” in Proc. IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, Jan. 2012, pp. 316–320.

    Google Scholar 

  3. C. Ide, B. Dusza, M. Putzke, and C. Wietfeld, “Channel sensitive transmission scheme for V2I-based floating car data collection via LTE,” in Proc. IEEE International Conference on Communications (ICC), Ottawa, ON, Jun. 2012, pp. 7151–7156.

    Google Scholar 

  4. E. Yaacoub and N. Zorba, “Enhanced connectivity in vehicular ad-hoc networks via V2V communications,” in Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Jul. 2013, pp. 1654–1659.

    Google Scholar 

  5. C. Liang and F. Yu, “Wireless network virtualization: A survey, some research issues and challenges,” IEEE Commun. Surveys Tuts., vol. PP, no. 99, pp. 1–1, 2014.

    Google Scholar 

  6. K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-defined mobile networks,” IEEE Commun. Mag., vol. 51, no. 7, pp. 44–53, Jul. 2013.

    Article  Google Scholar 

  7. R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A substrate for virtualizing wireless resources in cellular networks,” IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

    Article  Google Scholar 

  8. L. Caeiro, F. D. Cardoso, and L. M. Correia, “Adaptive allocation of virtual radio resources over heterogeneous wireless networks,” in Proc. European Wireless Conference, Poznan, Poland, Apr. 2012, pp. 1–7.

    Google Scholar 

  9. M. Kihl, K. Bur, P. Mahanta, and E. Coelingh, “3GPP LTE downlink scheduling strategies in vehicle-to-infrastructure communications for traffic safety applications,” in Proc. IEEE Symposium on Computers and Communications (ISCC), Cappadocia, Turkey, Jul. 2012, pp. 448–453.

    Google Scholar 

  10. S.-T. Cheng, G.-J. Horng, and C.-L. Chou, “Using cellular automata to form car society in vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1374–1384, Jun. 2011.

    Article  Google Scholar 

  11. J. Kenney, “Dedicated short-range communications (DSRC) standards in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, Jul. 2011.

    Article  Google Scholar 

  12. “Intelligent transport systems (ITS); framework for public mobile networks in cooperative ITS (C-ITS),” European Telecommunications Standards Institute (ETSI), Tech. Rep. 102 962 V1.1.1, Feb. 2012.

    Google Scholar 

  13. Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; General description, 3GPP Std. 36.201, Rev. 12.2.0, Mar. 2015.

    Google Scholar 

  14. G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro,, “LTE for vehicular networking: A survey,” IEEE Commun. Mag., vol. 51, no. 5, pp. 148–157, May 2013.

    Article  Google Scholar 

  15. J. Mosyagin, “Using 4G wireless technology in the car,” in Proc. International Conference on Transparent Optical Networks (ICTON), Munich, Jun. 2010, pp. 1–4.

    Google Scholar 

  16. T. Mangel, T. Kosch, and H. Hartenstein, “A comparison of UMTS and LTE for vehicular safety communication at intersections,” in Proc. IEEE Vehicular Networking Conference (VNC), Jersey City, Dec. 2010, pp. 293–300.

    Google Scholar 

  17. K. Zheng, S. Ou, J. Alonso-Zarate, M. Dohler, F. Liu, and H. Zhu, “Challenges of massive access in highly dense LTE-advanced networks with machine-to-machine communications,” IEEE Wireless Commun., vol. 21, no. 3, pp. 12–18, Jun. 2014.

    Article  Google Scholar 

  18. “IEEE standard for information technology– local and metropolitan area networks– specific requirements– part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications amendment 6: Wireless access in vehicular environments,” IEEE Std 802.11p-2010, pp. 1–51, Jul. 2010.

    Google Scholar 

  19. X. Wu, S. Subramanian, R. Guha, R. White, J. Li, K. Lu, A. Bucceri, and T. Zhang, “Vehicular communications using DSRC: Challenges, enhancements, and evolution,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 399–408, Jul. 2013.

    Article  Google Scholar 

  20. C. Han, M. Dianati, R. Tafazolli, R. Kernchen, and X. Shen, “Analytical study of the IEEE 802.11p MAC sublayer in vehicular networks,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 873–886, Feb. 2012.

    Article  Google Scholar 

  21. C.-L. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive intervehicle communication control for cooperative safety systems,” IEEE Netw., vol. 24, no. 1, pp. 6–13, Jan. 2010.

    Article  Google Scholar 

  22. A. Weinfeld, “Methods to reduce DSRC channel congestion and improve V2V communication reliability,” in Proc. 17th ITS World Congress, Busan, Oct. 2010.

    Google Scholar 

  23. S. Andrews and M. Cops, “Final report: Vehicle infrastructure integration proof of concept technical description-vehicle,” VII Consortium, Tech. Rep., Feb. 2009.

    Google Scholar 

  24. R. Kandarpa and M. Chenzaie, “Final report: Vehicle infrastructure integration (VII) proof of concept (POC) test–Executive summary,” U.S. Department of Transportation, IntelliDrive(SM), Tech. Rep., Feb. 2009.

    Google Scholar 

  25. A. Vinel, “3GPP LTE versus IEEE 802.11p/WAVE: Which technology is able to support cooperative vehicular safety applications?” IEEE Wireless Commun. Lett., vol. 1, no. 2, pp. 125–128, Feb. 2012.

    Article  Google Scholar 

  26. L. Lei, Y. Zhang, X. Shen, C. Lin, and Z. Zhong, “Performance analysis of device-to-device communications with dynamic interference using stochastic petri nets,” IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6121–6141, Dec. 2013.

    Article  Google Scholar 

  27. L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled device-to-device communications in LTE-advanced networks,” IEEE Wireless Commun., vol. 19, no. 3, pp. 96–104, Jun. 2012.

    Article  Google Scholar 

  28. “Study on lte device to device proximity services; radio aspects (release 12),” Tech. Rep. 36.843 V12.0.1, Mar. 2014.

    Google Scholar 

  29. Y. Morgan, “Notes on DSRC amp; WAVE standards suite: Its architecture, design, and characteristics,” IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 504–518, 2010.

    Article  Google Scholar 

  30. G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, “Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions,” IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp. 584–616, 2011.

    Article  Google Scholar 

  31. P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation,” IEEE Commun. Mag., vol. 47, no. 11, pp. 84–95, Nov. 2009.

    Article  Google Scholar 

  32. H. Moustafa and Y. Zhang, Vehicular Networks: Techniques, Standards, and Applications, 1st ed. Boston, MA, USA: Auerbach Publications, 2009.

    Book  Google Scholar 

  33. F. Martinez, C.-K. Toh, J.-C. Cano, C. Calafate, and P. Manzoni, “Emergency services in future intelligent transportation systems based on vehicular communication networks,” IEEE Trans. Intell. Transp. Syst. Mag., vol. 2, no. 2, pp. 6–20, Oct. 2010.

    Article  Google Scholar 

  34. W.-S. Soh and H. Kim, “QoS provisioning in cellular networks based on mobility prediction techniques,” IEEE Commun. Mag., vol. 41, no. 1, pp. 86–92, Jan. 2003.

    Article  Google Scholar 

  35. W. Wanalertlak, B. Lee, C. Yu, M. Kim, S.-M. Park, and W.-T. Kim, “Behavior-based mobility prediction for seamless handoffs in mobile wireless networks,” Wireless Networks, vol. 17, no. 3, pp. 645–658, Apr. 2011.

    Article  Google Scholar 

  36. G. Remy, S. M. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X-collection, dissemination and multi-hop forwarding,” in Proc. IEEE International Conference on Communications (ICC), Ottawa, ON, Jun. 2012, pp. 120–125.

    Google Scholar 

  37. G. Remy, S.-M. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X - impact of high mobility in highway scenarios,” in Proc. Global Information Infrastructure Symposium (GIIS), Da Nang, Aug. 2011, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Zheng, K., Zhang, L., Xiang, W., Wang, W. (2016). Architecture of Heterogeneous Vehicular Networks. In: Heterogeneous Vehicular Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25622-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25622-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25620-7

  • Online ISBN: 978-3-319-25622-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics