Skip to main content

Frames Versus Riesz Bases

  • Chapter
  • First Online:
An Introduction to Frames and Riesz Bases

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We have already seen that Riesz bases are frames. In this chapter we exploit the relationship between these two concepts further. In particular, we give a number of equivalent conditions for a frame to be a Riesz basis.

We have often spoken about a frame in an intuitive sense as some kind of “overcomplete basis.” It turns out that, in the technical sense, one has to be careful with such statements. In fact, we will prove the existence of a frame which has no relation to a basis: no subfamily of the frame forms a basis. On the other hand, sufficient conditions for a frame to contain a Riesz basis as a subfamily are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakić, D., Berić, T.: On excesses of frames (2014, preprint)

    Google Scholar 

  2. Balan, R., Casazza, P., Heil, C., Landau, Z.: Deficits and excesses of frames. Adv. Comput. Math. 18, 93–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casazza, P.G.: The Kadison–Singer problem and Paulsen problems in finite frames theory. In: Casazza, P., Kutyniok, G. (eds.) Finite Frames, Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  4. Casazza, P.G., Christensen, O.: Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to c 0. J. Math. Anal. Appl. 202, 940–950 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casazza, P.G., Christensen, O.: Frames and Schauder bases. In: Govil, N.K., Mohapatra, R.N., Nashed, Z., Sharma, A., Szabados, J. (eds.) Approximation Theory: In Memory of A.K. Varna, pp. 133–139. Marcel Dekker, New York (1998)

    Google Scholar 

  6. Casazza, P.G., Christensen, O., Lindner, A., Vershynin, R.: Frames and the Feichtinger conjecture. Proc. Am. Math. Soc. 133, 1025–1033 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G., Fickus, M., Tremain, J.C., Weber, E.:: The Kadison-Singer problem in mathematics and engineering – a detailed account. Contemp. Math. 414, 297–356 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Christensen, O.: Frames containing a Riesz basis and approximation of the frame coefficients using finite dimensional methods. J. Math. Anal. Appl. 199, 256–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, O., Lindner, A.: Frames of exponentials: lower frame bounds for finite subfamilies, and approximation of the inverse frame operator. Linear Algebra Appl. 323(1–3), 117–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen, O., Lindner, A.: Decompositions of wavelets and Riesz frames into a finite number of linearly independent sets. Linear Algebra Appl. 355, 147–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gröchenig, K.: Localized frames are finite unions of Riesz sequences. Adv. Comput. Math. 18, 149–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gröchenig, K.: Linear independence of time-shifts? Monatsh. Math. 177(1), 67–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holub, J.: Pre-frame operators, Besselian frames and near-Riesz bases. Proc. Am. Math. Soc. 122, 779–785 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, H.O., Lim, J.K.: New characterizations of Riesz bases. Appl. Comput. Harmon. Anal. 4, 222–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marcus, A., Spielman, D.A., Srivastava: Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem (2013, preprint)

    Google Scholar 

  16. Naimark, M.A.: Normed rings. Translated from the first russian version by L. Boron. P. Noordhoff N.V., Groningen (1964)

    MATH  Google Scholar 

  17. Young, R.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980) (revised first edition 2001)

    MATH  Google Scholar 

  18. Vershynin, R.: Subsequences of frames. Stud. Math. 145(3), 185–197 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Christensen, O. (2016). Frames Versus Riesz Bases. In: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-25613-9_7

Download citation

Publish with us

Policies and ethics