Skip to main content

Frames in Hilbert Spaces

  • Chapter
  • First Online:
An Introduction to Frames and Riesz Bases

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The main feature of a basis \(\{f_{k}\}_{k=1}^{\infty }\) in a Hilbert space \(\mathcal{H}\) is that every \(f \in \mathcal{H}\) can be represented as a superposition of the elements f k in the basis:

$$\displaystyle\begin{array}{rcl} f =\sum _{ k=1}^{\infty }c_{ k}(f)f_{k}.& &{}\end{array}$$
(5.1)

The coefficients c k (f) are unique. We now introduce the concept of frames. A frame is also a sequence of elements \(\{f_{k}\}_{k=1}^{\infty }\) in \(\mathcal{H}\), which allows every \(f \in \mathcal{H}\) to be written as in ( 5.1). However, the corresponding coefficients are not necessarily unique. Thus a frame might not be a basis; arguments for generalizing the basis concept were given in Chapter 4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123, 1661–1668 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.:Continuous frames in Hilbert space. Ann. Phys. 222(1), 1–37 (1993)

    Google Scholar 

  3. Casazza, P.G.: Every frame is a sum of three (but not two) orthonormal bases - and other frame representations J. Fourier Anal. Appl. 4(6), 727–732 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christensen, O.: Frames and pseudo-inverse operators. J. Math. Anal. Appl. 195, 401–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, O., Eldar, Y.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17(1), 48–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies, I.: The wavelet transformation, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  8. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  12. Li, S., Ogawa, H.: Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal. 11, 289–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10(4), 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Young, R.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980) (revised first edition 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Christensen, O. (2016). Frames in Hilbert Spaces. In: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-25613-9_5

Download citation

Publish with us

Policies and ethics