Skip to main content

Frames in Finite-Dimensional Inner Product Spaces

  • Chapter
  • First Online:
An Introduction to Frames and Riesz Bases

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 3153 Accesses

Abstract

In the study of vector spaces, one of the most important concepts is that of a basis. A basis provides us with an expansion of all vectors in terms of “elementary building blocks” and hereby helps us by reducing many questions concerning general vectors to similar questions concerning only the basis elements. However, the conditions to a basis are very restrictive – no linear dependence between the elements is possible, and sometimes we even want the elements to be orthogonal with respect to an inner product. This makes it hard or even impossible to find bases satisfying extra conditions, and this is the reason that one might look for a more flexible tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames. J. Fourier Anal. Appl. 18(6), 1167–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balan, R., Bodmann, B., Casazza, P., Eddin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon. Anal. 38, 469–488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedetto, J., and Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benedetto, J., Powell A., Yilmaz, Ö.: Second order sigma-delta quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20, 126–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, J., Lammers, M., Powell, A.M., Yilmaz, Ö.: Sobolev duals in frame theory and sigma-delta quantization. J. Fourier Anal. Appl. 16, 365–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blum, J., Lammers, M., Powell, A.M., Yilmaz, Ö.: Errata to: Sobolev duals in frame theory and sigma-delta quantization. J. Fourier Anal. Appl. 16, 382–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodmann, B.G.: Frames as codes. In: Kutyniok, G., Casazza, P.G. (eds.) Finite Frames. Applied and Numerical Harmonic Analysis, pp. 241–266. Birkhäuser, New York (2013)

    Google Scholar 

  10. Bodmann, B.G., Casazza, P.G.; Kutyniok, G.: A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal. 30(3), 348–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bownik, M., Speegle, D.: Linear independence of Parseval wavelets. Ill. J. Math. 54, 771–785 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Casazza, P. G., Fickus, M.,, Heinecke, A., Wang, Y., Zhou, Z.: Spectral tetris fusion frame constructions. J. Fourier Anal. Appl. 18(4), 828–851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casazza, P.G., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casazza, P.G., Kutyniok, G. (eds): Finite Frames: Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  15. Casazza, P.G., Kutyniok, G.: Frames and subspaces. In: Wavelets, Frames, and Operator Theory. Contemporary Mathematics, vol. 345, pp. 87–113. American Mathematical Society, Providence (2004)

    Google Scholar 

  16. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Casazza, P.G., Leonhard, N.: Classes of finite equal norm Parseval frames. Contemp. Math. 451, 11–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, S., Donoho, D., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christensen, O., Lindner, A.: Decompositions of wavelets and Riesz frames into a finite number of linearly independent sets. Linear Algebra Appl. 355, 147–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goyal, V.K., Kovačević, J., Kelner, A.J.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gröchenig, K.: Acceleration of the frame algorithm. IEEE Trans. Signal Process. 41(12), 3331–3340 (1993)

    Article  MATH  Google Scholar 

  22. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for undergraduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)

    Google Scholar 

  23. Heil, C., Ramanathan, J., Topiwala, P.: Linear independence of time-frequency translates. Proc. Am. Math. Soc. 124, 2787–2795 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jasper, J., Mixon, D.G., Fickus, M.: Kirkman equiangular tight frames and codes. IEEE Trans. Inf. Theory 60(1), 170–181 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lammers, M., Powell, A., Yilmaz, “O.: Alternative dual frames for digital-to-analog conversion in sigma-delta quantization. Adv. Comput. Math. 32, 73–102 (2010)

    Google Scholar 

  27. Linnell, P.: Von Neumann algebras and linear independence of translates. Proc. Am. Math. Soc. 127(11), 3269–3277 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mixon, D.G., Quinn, C.J., Kiyavash, N., Fickus, M.: Fingerprinting with equiangular tight frames. IEEE Trans. Inf. Theory 59(3), 1855–1865 (2013)

    Article  MathSciNet  Google Scholar 

  29. Powell, A.M., Saab, R., Yilmaz, Ö: Quantization and finite frames. In: Casazza, P., Kutyniok, G. (eds.) Finite Frames, chap. 8 Birkhäuser, Boston (2012)

    Google Scholar 

  30. Strohmer, T.: A note on equiangular tight frames. Linear Algebra Appl. 429(1), 326–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Strohmer, T., Heath, R.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sustik, M.A., Tropp, J.A., Dhillon, I.S., Heath, R.W., Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tropp, J.A., Dhillon, I.S.; Heath, R.W., Jr., Strohmer, T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51(1), 188–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, P., Zhou, S., Giannakis, S.B.: Achieving the Welch Bound with difference sets. IEEE Trans. Inf. Theory 51(5), 1900–1907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zimmermann, G.: Normalized tight frames in finite dimensions. In: Jetter, K., Haußmann, W., Reimer, M. (eds.) Recent Progress in Multivariate Approximation, pp. 249–252. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Christensen, O. (2016). Frames in Finite-Dimensional Inner Product Spaces. In: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-25613-9_1

Download citation

Publish with us

Policies and ethics