Skip to main content

Interaction of Glass Seals/Electrodes and Electrolytes

  • Chapter
  • First Online:
Solid Oxide Fuel Cell Components
  • 1501 Accesses

Abstract

SOFC contains solid electrolyte, which reduces any material corrosion problems along with the increased portable applications. A good/ideal SOFC electrolyte has high ionic conduction, no electronic conduction, good mechanical properties, and stability in reducing as well as oxidising atmospheres. The compatibility electrolytes with the adjoining components of SOFC play a key role in determining the cell efficiency. Hence, research is being pursued for fabricating the electrolytes which can be used for low temperature–intermediate temperature applications. High temperature SOFC enhances the fuel flexibility, whereas low temperature SOFC relaxes stringent material requirements. This chapter focuses around the compatibility of different electrolytes with the sealants glasses and electrolytes.

*All the glass compositions mentioned in this chapter are listed in table 5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Suggested Bibliography

  • Anderson MD, Stevenson JW, Simner SP (2004) J Power Sources 129:188

    Google Scholar 

  • Arashi H, Naito H (1992) Solid State Ionics 53–54:436

    Google Scholar 

  • Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ionics 99:297.

    Article  Google Scholar 

  • Berenov A, Wood H, Atkinson A (2007) ECS Trans 7:1173.

    Article  Google Scholar 

  • Chou YS, Stevenson JW, Choi JP (2014a) J Power Sources 255:1

    Article  Google Scholar 

  • Chou YS, Stevenson JW, Gow RN (2007a) J Power Sources 168:426

    Article  Google Scholar 

  • Clausen C, Bagger C, Bildesorensen JB, Horsewell A (1994) Solid State Ionics 70:59

    Google Scholar 

  • Colomer MT, Durán P, Caballero A, Jurado JR (1997) Mater Sci Eng A A229:114

    Google Scholar 

  • Donald JW, Mallinson PM, Metcalfe BL, Gerrard LA, Fernie JA (2011) J Mater Sci 46(7):1975

    Google Scholar 

  • Durán P, Capel F, Moure C, González-Elipe AR, Caballero A, Bañares MA (1999) J Electrochem Soc 146(7):2425

    Article  Google Scholar 

  • Feighery AJ, Irvine JTS (1999) Solid State Ionics 121:209

    Article  Google Scholar 

  • Fergus JW (2006b) Solid State Ionics 177:1529

    Article  Google Scholar 

  • Fergus JW (2005) J Power Sources 147:46

    Article  Google Scholar 

  • Ghosh S, Kundu P, Sharma AD, Basu RN, Maiti HS (2008) J Eur Ceram Soc 28:69

    Article  Google Scholar 

  • Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA, Ferreira JMF (2008) Acta Mater 56:3065

    Article  Google Scholar 

  • Goel A, Tulyaganov DU, Pascual MJ, Shaaban ER, Muñoz F, Lu Z, Ferreira JMF (2010a) J Non-Cryst Solids 356:1070

    Article  Google Scholar 

  • Goodenough JB, Manthiram A, Paranthaman M, Zhen YS (1992) Mater Sci Eng B12:357

    Article  Google Scholar 

  • Grosjean A, SansĂ©au O, Radmilovic V, Thorel A (2006) Solid State Ionics 177:1977

    Article  Google Scholar 

  • Gross SM, Koppitz T, Remmel J, Bouche JB, Reisgen U (2006) Fuel Cells Bull 2006:12

    Article  Google Scholar 

  • Guo X, Sigle W, Fleig J, Maier J (2002) Solid State Ionics 154/155:555

    Google Scholar 

  • Hashimoto S, Iwahara H (2000) J Electroceram 4:225

    Article  Google Scholar 

  • Heydari F, Maghsoudipour A, Hamnabard Z, Farhangdoust S (2012) Mater Sci Eng A 552:119

    Article  Google Scholar 

  • Hibino Y, Hashimoto A, Suzuki M, Sano M (2002) J Electrochem Soc 149(11):A1503

    Article  Google Scholar 

  • Horita T, Kishimoto H, Yamaji K, Xiong Y, Sakai N, Brito ME, Yokokawa H (2006) Solid State Ionics 177:1941

    Article  Google Scholar 

  • Hsu JH, Kim CW, Brow RK (2014) J Power Sources 250:236

    Article  Google Scholar 

  • Huang S, Lu Q, Wang C (2011) J Alloy Compd 509:4348

    Article  Google Scholar 

  • Huang J, Xie F, Wang C, Mao Z (2012) Int J Hydrogen Energy 37(1):877

    Article  Google Scholar 

  • Hui S, Roller J, Yick S, Zhang X, Deces-Petit C, Xie Y, Maric R, Ghosh D (2007) J Power Sources 172:493

    Article  Google Scholar 

  • Ishihara T, Tabuchi J, Ishikawa S, Yan J, Enoki M, Matsumoto H (2006) Solid State Ionics 177:1949

    Article  Google Scholar 

  • Jiang SP (2008) J Mater Sci 43:6799

    Article  Google Scholar 

  • Jiang SP, Chan SH (2004) J Mater Sci 39:4405

    Article  Google Scholar 

  • Jiang SP, Zhang JP, Ramprakash Y, Milosevic D, Wilshier K (2000) J Mater Sci 35:2735

    Article  Google Scholar 

  • Jiang SP, Zhang JP, Foger K (2003) J Eur Ceram Soc 23:1865

    Article  Google Scholar 

  • Kaiser A, Feighery AJ, Irvine JTS (1999) Electrochem Soc Proc 99–19(SOFC VI):541

    Google Scholar 

  • Kaur G, Kumar V, Pandey OP, Singh K (2012a) J Electrochem Soc 159:B277

    Article  Google Scholar 

  • Kaur G, Singh K, Pandey OP, Homa D, Scott B, Pickrell G (2013a) J Power Sources 240:458

    Google Scholar 

  • Kaur G, Homa D, Singh K, Pandey OP, Scott B, Pickrell G (2013b) J Power Sources 242:305

    Google Scholar 

  • Kaur G, Pandey OP, Singh K (2014b) Int J Appl Ceram Technol 11(1):136

    Article  Google Scholar 

  • Kawada T, Sakai N, Yokokawa H, Dokiya M, Anzai I (1992) Solid State Ionics 50:189

    Google Scholar 

  • Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135

    Article  Google Scholar 

  • Khedim H, Nonnet H, MĂ©ar FO (2012) J Power Sources 216:227

    Article  Google Scholar 

  • Kostogloudis GC, Ftikos C (1999) J Eur Ceram Soc 19:497

    Article  Google Scholar 

  • Kostogloudis GC, Vasilakos N, Ftikos C (1997) J Eur Ceram Soc 17:1513

    Article  Google Scholar 

  • Kumar V, Kaur G, Pandey OP, Singh K (2011) Phys Chem Glasses 52:212

    Google Scholar 

  • Labrincha JA, Frade JR, Marques FMB (1993) J Mater Sci 28:3809

    Article  Google Scholar 

  • Lahl N, Bahadur D, Singh K, Singheiser L, Hilpert K (2004) J Electrochem Soc 149:A607

    Article  Google Scholar 

  • Lara C, Pascual MJ, Duran A (2004) J Non-Cryst Solids 348:149

    Article  Google Scholar 

  • Letilly M, Joubert O, La Salle ALG (2012) J Power Sources 212:161

    Article  Google Scholar 

  • Matsuzaki Y, Yasuda I (2001) J Electrochem Soc 148:A126

    Article  Google Scholar 

  • Mitterdorfer A, Gauckler LJ (1998) Solid State Ionics 111:185

    Article  Google Scholar 

  • Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H et al (2000) Solid State Ionics 132:167

    Article  Google Scholar 

  • Mori M, Hiei Y, Sammes NM, Tompsett GA (1999a) In: Singhal S, Dokiya M (eds) SOFC-VI. The electrochemical society, Inc., Pennington, p 347

    Google Scholar 

  • Mori M, Abe T, Itoh H, Yamamoto O, Shen GQ, Takeda Y et al (1999b) Solid State Ionics 123:113

    Article  Google Scholar 

  • Naoumidis A, Ahmad-Khanlou A, Samardzija Z, Kolar D, Fresenius J (1999) Anal Chem 365:277

    Article  Google Scholar 

  • Nasrallah MM, Carter JD, Anderson HU, Koc R (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC-II. Commission of the European Communities, Luxemburg, p 637

    Google Scholar 

  • Park JY, Choi GM (2005) Solid State Ionics 176:2807

    Article  Google Scholar 

  • Pascual MJ, Kharton VV, Tsipis E, Yaremchenko AA, Lara C, Duran A, Frade JR (2006) J Euro Cera Soc 26(15):3315

    Google Scholar 

  • Paulson SC, Birss VI (2004) J Electrochem Soc 151:A1961

    Article  Google Scholar 

  • Pernot E, Anne M, Bacmann M, Stroble P, Fouletier J, Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1994) Solid State Ionics 70–71:259

    Article  Google Scholar 

  • Phillipps MB, Sammes NM, Yamamoto O (1999) Solid State Ionics 123:131

    Article  Google Scholar 

  • Quadakkers WJ, Greiner H, Hansel M, Pattanaik A, Khanna AS, Mallener W (1996) Solid State Ionics 91:55

    Article  Google Scholar 

  • Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161

    Article  Google Scholar 

  • Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M et al (1999) Solid State Ionics 118:187

    Article  Google Scholar 

  • Shelby JE (2005) Introduction to glass science and technology, second ed. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Shelton JP, Sprenkle VL, Stevenson JW (2003a) J Power Sources 113:1

    Article  Google Scholar 

  • Smeacetto F, Salvo M, Leone P, Santarelli M, Ferraris M (2011) Mater Lett 65:1048

    Article  Google Scholar 

  • Sohn SB, Choi SY, Kim GH, Song HS, Kim GD (2002) J Non-Cryst Solids 297:103

    Article  Google Scholar 

  • Steele BCH, Butler EP (1985) Proc Br Ceram Soc 36:45

    Google Scholar 

  • Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14:1125

    Article  Google Scholar 

  • Takeda Y, Tu HY, Sakaki H, Watanabe S, Imanishi N, Yamamoto O et al (1997) J Electrochem Soc 144:2810

    Google Scholar 

  • Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y et al (1995) J Power Sources 55:73

    Article  Google Scholar 

  • Tong JJ, Han MF, Singhal SC, Gong Y (2012) J Non-Cryst Solids 358:1038

    Article  Google Scholar 

  • Tricker DM, Stobbs WM (1993) In: Poulsen FW, Bentzen JJ, Jacobsen T, Skou E, Ostergard MJL (eds) 14th Riso international symposium on materials science: high temperature electrochemical behaviour of fast ion and mixed conductors. Riso National Laboratory, Roskilde, p 453

    Google Scholar 

  • Tsai T, Barnett SA (1997) Solid State Ionics 93:207

    Article  Google Scholar 

  • Ullmann H, Trofimenko N, Naoumidis A, Stover D (1999) J Eur Ceram Soc 19:791

    Article  Google Scholar 

  • van Roosmalen JAM, Cordfunke EHP (1992) Solid State Ionics 52:303

    Article  Google Scholar 

  • Wang R, Lu Z, Liu C, Zhu R, Huang X, Wei B, Ai N, Su W (2007) J Alloy Compd 432:189

    Article  Google Scholar 

  • Wang SF, Wang YR, Hsu YF, Chuang CC (2009) Int J Hydrogen Energy 34:8235

    Article  Google Scholar 

  • Wang SF, Hsu YF, Lu HC, Lo SC, Cheng CS (2012) Int J Hydrogen Energy 37:5901

    Article  Google Scholar 

  • Yamamoto O, Shen GQ, Takeda Y, Imanishi N, Sakaki Y (1991) In: SOFC-II. The electrochemical society, Inc., Pennington, p 158

    Google Scholar 

  • Ye Y, Yan D, Wang X, Pu J, Chi B, Jian L (2012) Int J Hydrogen Energy 37(2):1710

    Article  Google Scholar 

  • Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) J Electrochem Soc 138:2719

    Article  Google Scholar 

  • Yoon HS, Choi SW, Lee D, Kim BH (2001) J Power Sources 93:1

    Article  Google Scholar 

  • Zhen YD, Jiang SP, Zhang S, Tan V (2006) J Eur Ceram Soc 26:3253

    Article  Google Scholar 

  • Zhu WZ, Deevi SC (2003) Mater Sci Eng A362:228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2016). Interaction of Glass Seals/Electrodes and Electrolytes. In: Solid Oxide Fuel Cell Components. Springer, Cham. https://doi.org/10.1007/978-3-319-25598-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25598-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25596-5

  • Online ISBN: 978-3-319-25598-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics