Skip to main content

A Declarative View of Signaling Pathways

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9465))

Abstract

Due to the inherent limitations of wet-lab techniques, the experimental data regarding cellular signaling pathways often consider single pathways or a small subset of them. We propose a methodology for composing signaling pathways data in a coherent framework. Our method consists in specifying the signaling pathway as a computationally executable model. We rely on the timed concurrent constraint language ntcc to represent the system in hand as a set of stoichiometric-like equations resembling the essential features of molecular interactions. The main advantages of our approach stem from the use of constraints (formulas in logic) and from modeling of discrete time clocks in ntcc. We can deal with partial information, representing the fact that several features of the biological system may be undetermined. We can explicitly represent the time needed for a reaction to occur. We model and simulate some well known cross-talking networks, such as the TNF\(\alpha \), the EGF and the insulin signaling pathways as well as their interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is the more general case. It may happen that the consumption of a reactant does not lead to the production of other molecules or that, as in the case of enzymes, a molecule takes part to a reaction but is not consumed by it.

  2. 2.

    Proteins are composed by chains of aminoacyds. For biochemical reasons, aminoacyds are often called residues.

References

  1. Arias, J., Guzman, M., Olarte, C.: A symbolic model for timed concurrent constraint programming. Electr. Notes Theor. Comput. Sci. 312, 161–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, G.: The foundations of esterel. In: Plotkin, D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 425–454. The MIT Press, Cambridge (2000)

    Google Scholar 

  3. Blinov, M.L., Ruebenacker, O., Moraru, I.I.: Complexity and modularity of intracellular networks: a systematic approach for modelling and simulation. IET Syst. Biol. 2(5), 363–368 (2008)

    Article  Google Scholar 

  4. Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, p. 85. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Bodei, C., Bracciali, A., Chiarugi, D.: On deducing causalities in metabolic networks. BMC Bioinform. 9, S8 (2008)

    Article  Google Scholar 

  6. Bodei, C., Bracciali, A., Chiarugi, D., Gori, R.: A taxonomy of causality-based biological properties. Electron. Notes Theoret. Comput. Sci. 9, 116–133 (2008)

    Google Scholar 

  7. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent constraint programming. Constraints 13(1–2), 66–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: VICE: a virtual cell. In: Schachter, V., Danos, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Chiarugi, D., Falaschi, M., Hermith, D., Guzman, M., Olarte, C.: Simulating signalling pathways with bioways. Electr. Notes Theor. Comput. Sci. 293, 17–34 (2013)

    Article  Google Scholar 

  10. Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C.: Verification of spatial and temporal modalities in biochemical systems. In: Electronic Notes in Theoretical Computer Science, page In press (2015)

    Google Scholar 

  11. Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional modelling of signalling pathways in timed concurrent constraint programming. In: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, BCB 2010, pp. 414–417. ACM (2010)

    Google Scholar 

  12. Ciocchetta, F., Hillston, J.: Bio-pepa: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csehi, S., Mathieu, S., Seifert, U., Lange, A., Zweyer, M., Wernig, A., Adam, D.: Tumor necrosis factor (TNF) interferes with insulin signaling through the p55 TNF receptor death domain. Biochem. Biophys. Res. Commun. 329, 397–405 (2005)

    Article  Google Scholar 

  14. Devlin, T.M.: Textbook of Biochemistry with Clinical Correlations. Wiley-Liss, New York (2002)

    Book  Google Scholar 

  15. Gaudet, S., et al.: A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol. Cell. Proteomics 4, 1569–1590 (2008)

    Article  Google Scholar 

  16. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modeling and querying interaction networks in the biochemical abstract machine biocham. J. Biol. Phys. Chem. 4(2), 64–73 (2004)

    Article  MATH  Google Scholar 

  17. Fayruzov, T., Janssen, J., Vermeir, D., Cornelis, C., De Cock, M.: Modelling gene and protein regulatory networks with answer set programming. IJDMB 5(2), 209–229 (2011)

    Article  Google Scholar 

  18. Finkel, T., Gutkind, J.S.: Signal Transduction and Human Disease. Wiley-Liss, Hoboken (2003)

    Book  Google Scholar 

  19. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25, 1239–1249 (2007)

    Article  Google Scholar 

  20. Gaudet, S., Janes, K.A., Albeck, J.G., Pace, E.A., Lauffenburger, D.A., Sorger, P.K.: A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol. Cell. Proteomics 4(10), 1569–1590 (2005)

    Article  Google Scholar 

  21. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem 58, 35–55 (2007)

    Article  Google Scholar 

  22. Goss, P., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Biochemistry 95, 6750–6754 (1998)

    Google Scholar 

  23. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Probabilistic concurrent constraint programming. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 243–257. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  24. Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret. Comput. Sci. 285(2), 121–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent constraint programming. Nord. J. Comput. 2(2), 181–220 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Milner, R.: Communication and Concurrency. International Series in Computer Science. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  27. Milner, R.: Communicating and Mobile Systems: The \(\pi \)-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Nielsen, M., Palamidessi, C., Valencia, F.: Temporal concurrent constraint programming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Ninio, J.: Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities. Proc. Natl. Acad. Sci. USA 84, 663–667 (1987)

    Article  Google Scholar 

  30. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent constraint programming. Constraints 18(4), 535–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic semantics and applications to security. In: Wainwright, R.L., Haddad, H. (eds.) Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16–20, 2008, pp. 145–150. ACM (2008)

    Google Scholar 

  32. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26(1), 9–24 (1996)

    Article  Google Scholar 

  33. Saraswat, V.: Concurrent Constraint Programming. The MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  34. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint programming. J. Symb. Comput. 22(5/6), 475–520 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: Wise, D.S. (ed.) Conference Record of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando, Florida, USA, January 21–23, 1991, pages 333–352. ACM Press (1991)

    Google Scholar 

  36. Smolka, G.: A foundation for higher-order concurrent constraint programming. In: Jouannaud, J.-P. (ed.) Constraints in Computational Logics. LNCS, vol. 845, pp. 50–72. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  37. Talcott, C.: Pathway Logic. In: Degano, P., Bernardo, M., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Falaschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C. (2015). A Declarative View of Signaling Pathways. In: Bodei, C., Ferrari, G., Priami, C. (eds) Programming Languages with Applications to Biology and Security. Lecture Notes in Computer Science(), vol 9465. Springer, Cham. https://doi.org/10.1007/978-3-319-25527-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25527-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25526-2

  • Online ISBN: 978-3-319-25527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics