Skip to main content

Ocular Hypotensives and Neuroprotectants in Glaucoma

  • Chapter
  • First Online:
  • 1635 Accesses

Abstract

Glaucoma is the leading cause of blindness in the world. It is an optic neuropathy disease associated with elevated intraocular pressure. Glaucoma encompass a group of various clinical presentations that share the same anatomical feature, a progressive loss of retinal ganglion cells (RGCs) superior to the age-related loss. This chapter deals about the pharmacology of conventional antiglaucoma drugs and newer drugs/pathways which are under investigation. Medical management of glaucoma has been discussed with the concept of reaching target intraocular pressure (“Target IOP”) using pharmacological agents. Newer concept of neuro-protectants for the management of glaucoma has also been included in the deliberations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82:887–8.

    PubMed Central  PubMed  Google Scholar 

  • George R, Ve RS, Vijaya L. Glaucoma in India: estimated burden of disease. J Glaucoma. 2010;19:391–7.

    Article  PubMed  Google Scholar 

  • Johnstone MA, Albert DM. Prostaglandin –induced hair growth. Surv Opthalmol. 2002;47 Suppl 1:S185–202.

    Article  Google Scholar 

  • Pfeiffer N, Thieme H. Prostaglandin analogues. In: Shaarawy T, Sherwood MB, Crowston JG, Hitchings RA, editors. Glaucoma-medical diagnosis and therapy. London. Elsveir Ltd; 2015. p. 543.

    Google Scholar 

  • Tripathi KD. Essentials of Medical Pharmacology, New Delhi: Jaypee Brothers Medical Publishers. 2008 (5th ed), p.674.

    Google Scholar 

  • Rao PV, Epstein DL. Rho GTPase/Rho kinase as a novel target for the treatment of glaucoma. BioDrugs. 2007;21:167–77.

    Article  CAS  PubMed  Google Scholar 

  • Challa P, Arnold JJ. Rho-kinase inhibitors offer a new approach in the treatment of glaucoma. Expert Opin Investig Drugs. 2014;23(1):81–95.

    Article  CAS  PubMed  Google Scholar 

  • Tanihara H, Inatani M, Honjo M, et al. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008;126:309–15.

    Article  CAS  PubMed  Google Scholar 

  • Hahmann C, Schroeter T. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci. 2010;67(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  • Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120:1268–79.

    Article  PubMed  Google Scholar 

  • Feiner L, Piltz-Seymour JR. Collaborative Initial Glaucoma Treatment Study: a summary of results to date. Curr Opin Ophthalmol. 2003;14:106–11.

    Article  PubMed  Google Scholar 

  • Hodapp E, Parrish 2nd RK, Anderson DR. Clinical decisions in glaucoma. St Louis: Mosby and Co; 1993. p. 63–92.

    Google Scholar 

  • Jampel HD. Target pressure in glaucoma therapy. J Glaucoma. 1997;6:133–8.

    Article  CAS  PubMed  Google Scholar 

  • Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–53.

    Article  CAS  PubMed  Google Scholar 

  • American academy of ophthalmology basic and clinical science course section 10. Glaucoma. 2004–2005.

    Google Scholar 

  • Bito LZ. A new approach to the medical management of glaucoma, from the bench to the clinic, and beyond: the Proctor Lecture. Invest Ophthalmol Vis Sci. 2001;42(6):1126–33.

    CAS  PubMed  Google Scholar 

  • Camras CB, Siebold EC, Lustgarten JS, et al. Maintained reduction of intraocular pressure by prostaglandin F2 alpha-1-isopropyl ester applied in multiple doses in ocular hypertensive and glaucoma patients. Ophthalmology. 1989;96(9):1329–36; discussion 1336–27.

    Article  CAS  PubMed  Google Scholar 

  • Lim KS, Nau CB, O’Byrne MM, et al. Mechanism of action of bimatoprost, latanoprost, and travoprost in healthy subjects. A crossover study. Ophthalmology. 2008;115(5):790–5 e794.

    Article  PubMed Central  PubMed  Google Scholar 

  • Walters TR, DuBiner HB, Carpenter SP, Khan B, VanDenburgh AM. 24-hour IOP control with once-daily bimatoprost, timolol gel-forming solution, or latanoprost: a 1-month, randomized, comparative clinical trial. Surv Ophthalmol. 2004;49 Suppl 1:S26–35.

    Article  PubMed  Google Scholar 

  • Alm A, Stjernschantz J. Effects on intraocular pressure and side effects of 0.005% latanoprost applied once daily, evening or morning. A comparison with timolol. Scandinavian Latanoprost Study Group. Ophthalmology. 1995;102(12):1743–52.

    Article  CAS  PubMed  Google Scholar 

  • Sjoquist B, Stjernschantz J. Ocular and systemic pharmacokinetics of latanoprost in humans. Surv Ophthalmol. 2002;47 Suppl 1:S6–12.

    Article  PubMed  Google Scholar 

  • Sharif NA, Kelly CR, Crider JY, Williams GW, Xu SX. Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies at FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther. 2003;19(6):501–15.

    Article  CAS  PubMed  Google Scholar 

  • Gross RL, Peace JH, Smith SE, et al. Duration of IOP reduction with travoprost BAK-free solution. J Glaucoma. 2008;17(3):217–22.

    Article  PubMed  Google Scholar 

  • Stewart WC, Kolker AE, Stewart JA, Leech J, Jackson AL. Conjunctival hyperemia in healthy subjects after short-term dosing with latanoprost, bimatoprost, and travoprost. Am J Ophthalmol. 2003;135(3):314–20.

    Article  CAS  PubMed  Google Scholar 

  • Konstas AG, Katsimbris JM, Lallos N, Boukaras GP, Jenkins JN, Stewart WC. Latanoprost 0.005% versus bimatoprost 0.03% in primary open-angle glaucoma patients. Ophthalmology. 2005;112(2):262–6.

    Article  PubMed  Google Scholar 

  • Goldberg I. Comparison of tropical travoprost eye drops given once daily and timolol 0.5% given twice daily in patients with open-angle glaucoma or ocular hypertension. J Glaucoma. 2001;10:414–22.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JS, Gross RL, Cheetham JK, VanDenburgh AM, Bernstein P, Whitcup SM. Two-year double-masked comparison of bimatoprost with timolol in patients with glaucoma or ocular hypertension. Surv Ophthalmol. 2004;49 Suppl 1:S45–52.

    Article  PubMed  Google Scholar 

  • Bayer A, Weiler W, Oeverhaus U, Skrotzki FE, Stewart WC. Two year follow-up of latanoprost 0.005% monotherapy after changing from previous glaucoma therapies. J Ocul Pharmacol Ther. 2004;20(6):470–8.

    Article  CAS  PubMed  Google Scholar 

  • Boger III WP. Short term “escape” and long term “drift”: the dissipation effects of the beta adrenergic agents. Surv Ophthalmol. 1983;28(Suppl):235–42.

    Article  PubMed  Google Scholar 

  • Gieser SC, Juzych M, Robin AL, et al. Clinical pharmacology of adrenergic drugs. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. St. Louis: Mosby; 1996.

    Google Scholar 

  • Allingham RR, Damji K, Freedman S, et al. Adrenergic receptor antagonists. In: Shield’s textbook of glaucoma. Philadelphia: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  • Dunham CN, Spaide RF, Dunham G. The contralateral reduction of intraocular pressure by timolol. Br J Ophthalmol. 1994;78:38–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fechtner RD. Beta blockers. In: Netland PA, Allen RC, editors. Glaucoma medical therapy principles and management. San Francisco: The Foundation of the American Academy of Ophthalmology; 1999.

    Google Scholar 

  • Reitsamer HA, Posey M, Kiel JW. Effects of a topical alpha2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Exp Eye Res. 2006;82(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  • Toris CB, Camras CB, Yablonski ME. Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol. 1999;128(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  • Yuksel N, Guler C, Caglar Y, Elibol O. Apraclonidine and clonidine: a comparison of efficacy and side effects in normal and ocular hypertensive volunteers. Int Ophthalmol. 1992;16(4–5):337–42.

    Article  CAS  PubMed  Google Scholar 

  • Whitson JT, Ochsner KI, Moster MR, et al. The safety and intraocular pressure-lowering efficacy of brimonidine tartrate 0.15% preserved with polyquaternium-1. Ophthalmology. 2006;113(8):1333–9.

    Article  PubMed  Google Scholar 

  • Mungan NK, Wilson TW, Nischal KK, Koren G, Levin AV. Hypotension and bradycardia in infants after the use of topical brimonidine and beta-blockers. J AAPOS. 2003;7(1):69–70.

    Article  PubMed  Google Scholar 

  • Schuman JS. Short- and long-term safety of glaucoma drugs. Expert Opin Drug Saf. 2002;1(2):181–94.

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Murakami M, Wynns GC, et al. Membrane carbonic anhydrase (IV) and ciliary epithelium. Carbonic anhydrase activity is present in the basolateral membranes of the non-pigmented ciliary epithelium of rabbit eyes. Exp Eye Res. 1996;62(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  • Turtz CA, Turtz AI. Toxicity due to acetazolamide (diamox). AMA Arch Ophthalmol. 1958;60(1):130–1.

    Article  CAS  PubMed  Google Scholar 

  • Michaud JE, Friren B, International Brinzolamide Adjunctive Study Group. Comparison of topical brinzolamide 1% and dorzolamide 2% eye drops given twice daily in addition to timolol 0.5% in patients with primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(2):235–43.

    Article  CAS  PubMed  Google Scholar 

  • Siesky B, Harris A, Cantor LB, et al. A comparative study of the effects of brinzolamide and dorzolamide on retinal oxygen saturation and ocular microcirculation in patients with primary open-angle glaucoma. Br J Ophthalmol. 2008;92(4):500–4.

    Article  CAS  PubMed  Google Scholar 

  • Friedland BR, Mallonee J, Anderson DR. Short-term dose response characteristics of acetazolamide in man. Arch Ophthalmol. 1977;95(10):1809–12.

    Article  CAS  PubMed  Google Scholar 

  • Alward WL. Medical management of glaucoma. N Engl J Med. 1998;339(18):1298–307.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney KR, Chapron DJ, Brandt JL, Gomolin IH, Feig PU, Kramer PA. Toxic interaction between acetazolamide and salicylate: case reports and a pharmacokinetic explanation. Clin Pharmacol Ther. 1986;40(5):518–24.

    Article  CAS  PubMed  Google Scholar 

  • Bateson MC, Lant AF. Dietary potassium and diuretic therapy. Lancet. 1973;2(7825):381–2.

    Article  CAS  PubMed  Google Scholar 

  • Worthen DM. Effect of pilocarpine drops on the diurnal intraocular pressure variation in patients with glaucoma. Invest Ophthalmol. 1976;15:784–7.

    CAS  PubMed  Google Scholar 

  • Quigley HA, Pollack IP. Intraocular pressure control with twice daily pilocarpine in two vehicle solutions. Ann Ophthalmol. 1977;9:427–30.

    CAS  PubMed  Google Scholar 

  • Van Hoose MC, Leaders FE. The role of cornea in biological response to pilocarpine. Invest Ophthalmol. 1974;13:377–83.

    PubMed  Google Scholar 

  • Zimmerman TJ, Wheeler TM. Miotics: side effects and ways to avoid them. Ophthalmology. 1982;89(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  • Pape LG, Forbes M. Retinal detachment and miotic therapy. Am J Ophthalmol. 1978;85(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  • Eilderton TE, Farmati O, Zsigmond EK. Reduction in plasma cholinesterase levels after prolonged administration of echothiophate iodide eyedrops. Can Anaesth Soc J. 1968;15(3):291–6.

    Article  CAS  PubMed  Google Scholar 

  • Singh A. Medical therapy of glaucoma. Ophthalmol Clin North Am. 2005;18:397–408.

    Article  PubMed  Google Scholar 

  • McCurdy DK, Schneider B, Scheie HG. Oral glycerol: the mechanism of intraocular hypotension. Am J Ophthalmol. 1966;61:1244–9.

    Article  CAS  PubMed  Google Scholar 

  • Danesh-Meyer HV, Levin LA. Neuroprotection: extrapolating from neurologic diseases to the eye. Am J Ophthalmol. 2009;148(2):186–91 e182.

    Article  PubMed  Google Scholar 

  • Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.

    Article  PubMed Central  PubMed  Google Scholar 

  • Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126(4):487–97.

    Google Scholar 

  • The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS investigators. Am J Ophthalmol. 2000;130(4):429–40.

    Google Scholar 

  • Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.

    Article  PubMed  Google Scholar 

  • Osborne NN. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog Brain Res. 2008;173:339–52.

    Article  CAS  PubMed  Google Scholar 

  • Shih GC, Calkins DJ. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert Rev Ophthalmol. 2012;7(2):161–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Limb GA, Martin KR. Current prospects in optic nerve protection and regeneration: sixth ARVO/Pfizer Ophthalmics Research Institute conference. Invest Ophthalmol Vis Sci. 2011;52(8):5941–54.

    Article  PubMed  Google Scholar 

  • Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol. 2012;23(2):144–54.

    Article  PubMed  Google Scholar 

  • Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma – is there a future role? Exp Eye Res. 2010;91(5):554–66.

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN, Chidlow G, Nash MS, Wood JP. The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol. 1999a;10(2):82–92.

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN, Ugarte M, Chao M, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999b;43 Suppl 1:S102–28.

    Article  PubMed  Google Scholar 

  • Newman NJ, Biousse V, David R, et al. Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am J Ophthalmol. 2005;140(3):407–15.

    CAS  PubMed  Google Scholar 

  • Wilhelm B, Ludtke H, Wilhelm H. Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch Clin Exp Ophthalmol. 2006;244(5):551–8.

    Article  CAS  PubMed  Google Scholar 

  • Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151(4):671–81.

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro MF, Levin LA. Clinical evidence for neuroprotection in glaucoma. Am J Ophthalmol. 2011;152(5):715–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci. 2004a;45(8):2625–39.

    Article  PubMed  Google Scholar 

  • Hare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: structural measures. Invest Ophthalmol Vis Sci. 2004b;45(8):2640–51.

    Article  PubMed  Google Scholar 

  • Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN. Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol. 2009;87(4):450–4.

    Article  PubMed  Google Scholar 

  • Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2010;2:CD006539.

    Google Scholar 

  • Scozzafava A, Supuran CT, Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem. 2014;75:349–59.

    Article  CAS  PubMed  Google Scholar 

  • Levin LA, Danesh-Meyer HV. Lost in translation: bumps in the road between bench and bedside. JAMA. 2010;303(15):1533–4.

    Article  CAS  PubMed  Google Scholar 

  • Wang SK, Chang RT. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bausch + Lomb and Nicox’s Glaucoma Candidate VESNEO: http://ir.valeant.com/investor-relations/news-releases/news-release-details/2014/Bausch--Lomb-and-Nicoxs-Glaucoma-Candidate-VESNEO-latanoprostene-bunod-Meets-Primary-Endpoint-in-Phase-3-Studies/default.aspx

  • Yang H, Leffler CT. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther. 2013;29(2):166–72.

    Article  PubMed  Google Scholar 

  • Fulgencio Gde O, Viana FA, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Junior Ada S. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.

    Article  PubMed  Google Scholar 

  • Manickavasagam D, Oyewumi MO. Critical assessment of implantable drug delivery devices in glaucoma management. J Drug Deliv. 2013;2013:895013.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Senthilkumari PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dada, T., Ichhpujani, P., Senthilkumari, S., Bron, A. (2016). Ocular Hypotensives and Neuroprotectants in Glaucoma. In: Velpandian, T. (eds) Pharmacology of Ocular Therapeutics. Adis, Cham. https://doi.org/10.1007/978-3-319-25498-2_7

Download citation

Publish with us

Policies and ethics