Skip to main content

Ocular Diagnostic Agents

  • Chapter
  • First Online:
Pharmacology of Ocular Therapeutics

Abstract

Eye is the most accessible and easily visualized organ in the human body; due to this feature ophthalmic dyes have a significant role in ophthalmology to aid effective diagnosis of ocular condition. These dyes are extensively used for the differential diagnosis in various ocular pathological conditions such as corneal abrasions, congestion, micro aneurysm, blood vessel proliferations in retina and ischemia etc.This chapter discusses about the handful of dyes such as trypan blue, rose bengal, indocynine green, brilliant blue, lissamine green and triamicolone actetonide etc., for their clinical utility, and their adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benedetto DA, Clinch TE, Laibson PR. In vivo observation of tear dynamics using fluorophotometry. Arch Ophthalmol. 1984;102:410–2.

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz BA, Tofts PS, Sen HA, Ando N, de Juan Jr E. Accurate and precise measurement of blood-retinal barrier breakdown using dynamic Gd-DTPA MRI. Invest Ophthalmol Vis Sci. 1992;33(13):3500–6.

    PubMed  CAS  Google Scholar 

  • Bert RJ, Caruthers SD, Jara H, et al. Demonstration of an anterior diffusional pathway for solutes in the normal human eye with high spatial resolution contrast-enhanced dynamic MR imaging. Invest Ophthalmol Vis Sci. 2006;47:5153–62.

    Article  PubMed  Google Scholar 

  • Björnsson OG, Murphy R, Chadwick VS. Physicochemical studies of indocyanine green (ICG): absorbance/ concentration relationship, pH tolerance and assay precision in various solvents. Experientia. 1982;38(12):1441–2.

    Article  PubMed  Google Scholar 

  • Brown SM, Graham WA, McCartney DL. Trypan blue in pediatric cataract surgery. J Cataract Refract Surg. 2004;30(10):2033.

    Article  PubMed  Google Scholar 

  • Chang YS, Tseng SY, Tseng SH. Comparison of dyes for cataract surgery. Part 2: efficacy of capsule staining in a rabbit model. J Cataract Refract Surg. 2005;31(4):799–804.

    Article  PubMed  Google Scholar 

  • Chang YS, Wu CL, Tseng SH, et al. Cytotoxicity of triamcinolone acetonide on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2007;48(6):2792–8.

    Article  PubMed  Google Scholar 

  • Couch SM, Bakri SJ. Use of triamcinolone during vitrectomy surgery to visualize membranes and vitreous. Clin Ophthalmol. 2008;2(4):891–6.

    PubMed Central  PubMed  Google Scholar 

  • Emran N, Sommer A. Lissamine green staining in the clinical diagnosis of xerophthalmia. Arch Ophthalmol. 1979;97:2333–5.

    Article  PubMed  CAS  Google Scholar 

  • Engel E, Schraml R, Maisch T, et al. Light-induced decomposition of indocyanine green. Invest Ophthalmol Vis Sci. 2008;49(5):1777–83.

    Article  PubMed  Google Scholar 

  • Feenstra RPG, Tseng SCG. Comparison of fluorescein and rose Bengal staining. Ophthalmology. 1992;99:605–17.

    Article  PubMed  CAS  Google Scholar 

  • Floman N, Zor U. Mechanism of steroid action in ocular inflammation: inhibition of prostaglandin production. Invest Ophthalmol Vis Sci. 1977;16(1):69–73.

    PubMed  CAS  Google Scholar 

  • Gandorfer A, Haritoglou C, Kampik A, Charteris D. Ultrastructure of the vitreoretinal interface following removal of the internal limiting membrane using indocyanine green. Curr Eye Res. 2004;29(4–5):319–20.

    Article  PubMed  Google Scholar 

  • Hamrah P, Alipour F, Jiang S, Sohn J-H, Foulks GN. Optimizing evaluation of Lissamine Green parameters for ocular surface staining. Eye (Lond). 2011;25(11):1429–34.

    Article  CAS  Google Scholar 

  • Haritoglou C, Gandorfer A, Gass CA, Kampik A. Histology of the vitreoretinal interface after staining of the internal limiting membrane using glucose 5% diluted indocyanine green and infracyanine green. Am J Ophthalmol. 2004;137:345–8.

    Article  PubMed  Google Scholar 

  • Jackson TL. http://www.opsweb.org/?page=FA.

  • Jackson TL, Vote B, Knight BC, El-Amir A, Stanford MR, Marshall J. Safety testing of infracyanine green using retinal pigment epithelium and glial cell cultures. Invest Ophthalmol Vis Sci. 2004;45(10):3697–703.

    Article  PubMed  Google Scholar 

  • Jacobs J. Fluorescein sodium – what is it? J Ophthalmic Photography. 1992;14:62.

    Google Scholar 

  • John T. Use of indocyanine green in deep lamellar endothelial keratoplasty. J Cataract Refract Surg. 2003;29(3):437–43.

    Article  PubMed  Google Scholar 

  • Kim J. The use of vital dyes in corneal disease. Curr Opin Ophthalmol. 2000;11:241–7.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Saeki A, Nishimura A, et al. Visualization of conjunctival cyst by indocyanine green. Am J Ophthalmol. 2002;133(2):827–8.

    Article  PubMed  Google Scholar 

  • Kothari K, Jain SS, Shah NJ. Anterior capsular staining with trypan blue for capsulorhexis in mature and hypermature cataracts. A preliminary study. Indian J Ophthalmol. 2001;49(3):177–80.

    PubMed  CAS  Google Scholar 

  • Laperche Y, Oudea MC, Lostanlen D. Toxic effects of indocyanine green on rat liver mitochondria. Toxicol Appl Pharmacol. 1977;41(2):377–87.

    Article  PubMed  CAS  Google Scholar 

  • Lass JH, Spurney RV, Rm D, et al. A morphologic and fluorophotometric analysis of the corneal endothelium in type I diabetes mellitus and cystic fibrosis. Am J Ophthalmol. 1985;100:783–8.

    Article  PubMed  CAS  Google Scholar 

  • Machado LM, Castro RS, Fontes BM. Staining patterns in dry eye syndrome: rose Bengal versus lissamine green. Cornea. 2009;28(7):732–4.

    Article  PubMed  Google Scholar 

  • Mao X, Zhang S, Hen H, Du L, Li G, Li B, Zhang H. Corneal permeability assay of topical eye drop solutions in rabbits by MRI. J Huazhong Univ Sci Technolog Med Sci. 2010;30(6):804–8.

    Article  PubMed  CAS  Google Scholar 

  • Marsh RJ, Fraunfelder FT, McGill JI. Herpetic corneal epithelial disease. Arch Ophthalmol. 1976;94:1899–902.

    Article  PubMed  CAS  Google Scholar 

  • Mishima A, Gasset A, Klyce Jr SD, Baum JL. Determination of tear volume and tear flow. Invest Ophthalmol. 1966;5:264–76.

    PubMed  CAS  Google Scholar 

  • Montavale. Physicians’ desk reference for ophthalmic medicines montvale. Thompson PDR; 207, 2006.

    Google Scholar 

  • Morgan HP, McNae IW, Nowicki MW, Zhong W, Michels PA, Auld DS, Fothergill-Gilmore LA, Walkinshaw MD. The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. J Biol Chem. 2011;286(36):31232–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morris PF. Fluorescein sodium and indocyanine green: uses and side effects. In: Saine PJ, Tyler ME, editors. Ophthalmic photography: retinal photography, angiography and electronic imaging. 2nd ed. Boston: Butterworth-Heinemann; 2002. p. 137–65.

    Google Scholar 

  • Narayanan R, Mungcal JK, Kenney MC, et al. Toxicity of triamcinolone acetonide on retinal neurosensory and pigment epithelial cells. Invest Ophthalmol Vis Sci. 2006;47(2):722–8.

    Article  PubMed  Google Scholar 

  • Nodarian M, Feys J, Sultan G, Salvanet-Bouccara A. Capsulorhexis staining by trypan blue in mature cataract surgery. J Fr Ophtalmol. 2001;24(3):274–6.

    PubMed  CAS  Google Scholar 

  • Norn MS. Desiccation of the precorneal tear film. I. Corneal wetting-time. Acta Ophthalmol. 1969;47:865–80.

    Article  CAS  Google Scholar 

  • Peyman GA, Cheema R, Conway MD, Fang T. Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloid during pars plana vitrectomy. Retina. 2000;20(5):554–5.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues EB, Meyer CH, Farah ME, Kroll P. Intravitreal staining of the internal limiting membrane using indocyanine green in the treatment of macular holes. Ophthalmologica. 2005;219(5):251–62.

    Article  PubMed  Google Scholar 

  • Roos JC, Kerr Muir MG. Use of trypan blue for penetrating keratoplasty. J Cataract Refract Surg. 2005;31(10):1867–9.

    Article  PubMed  Google Scholar 

  • Saini JS, Jain AK, Sukhija J, et al. Anterior and posterior capsulorhexis in pediatric cataract surgery with or without trypan blue dye: randomized prospective clinical study. J Cataract Refract Surg. 2003;29(9):1733–7.

    Article  PubMed  Google Scholar 

  • Satofuka S, Nakamura K, Negishi K, et al. Time course of lens capsule staining using trypan blue and indocyanine green: in vitro study in porcine eyes. J Cataract Refract Surg. 2004;30(8):1751–4.

    Article  PubMed  Google Scholar 

  • Sauter JJM. Diagnosis of xerophthalmia by vital staining. Trop Doct. 1976;6:91–3.

    Google Scholar 

  • Shah GK, Rosenblatt BJ, Smith M. Internal limiting membrane peeling using triamcinolone acetonide: histopathologic confirmation. Am J Ophthalmol. 2004;138(4):656–7.

    Article  PubMed  CAS  Google Scholar 

  • Stevens A, Altman, Lisa Panders et al. Comparison of trypan blue dye exclusion and flurometric assay for mammalian cell viability. Biotechnol. Prog 1993,9(6 closed up):671–674.

    Google Scholar 

  • Toczylowska B, Elzbieta Z, Grazyna G, Daniel M, Anna G, Adam L. Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study Biomed. Opt Express. 2014;5(3):800–16.

    Article  CAS  Google Scholar 

  • Uchiyama E, Aronowicz JD, Butovich IA, Mc Culley JP. Pattern of vital staining and its correlation with aqueous tear deficiency and meibomian gland dropout. Eye Contact Lens. 2007;33(4):177–9.

    Article  PubMed  Google Scholar 

  • Wilson II FM. Rose bengal staining of epibulbar squamous neoplasms. Ophthalmic Surg. 1976;7(2):21–3.

    PubMed  Google Scholar 

  • Wolfe DR. Fluorescein angiography basic science and engineering. Ophthalmology. 1986;93:1617–20.

    Article  PubMed  CAS  Google Scholar 

  • Ye YF, Gao YF, Xie HT, Wang HJ.Pharmacokinetics and retinal toxicity of various doses of intravitreal triamcinolone acetonide in rabbits. Mol Vis. 2014;20:629–36.

    Google Scholar 

  • Yoshikawa T, Hirota S, Ohno Y, Matsumoto S, Ichikawa S, Tomita M, Fukuda T, Sako M, Yokogawa S. Basic study of MR-dacryocystography. Nippon Igaku Hoshasen Gakkai Zasshi. 1998;58(13):758–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugesan Vanathi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saini, M., Nath, M., Vanathi, M. (2016). Ocular Diagnostic Agents. In: Velpandian, T. (eds) Pharmacology of Ocular Therapeutics. Adis, Cham. https://doi.org/10.1007/978-3-319-25498-2_13

Download citation

Publish with us

Policies and ethics