Skip to main content

δ-Opioids and Neurogenesis

  • Chapter
  • First Online:
Neural Functions of the Delta-Opioid Receptor

Abstract

Opioid analgesics and endogenous opioid peptides have a wide range of physiological and behavioral effects on pain perception, mood, motor control and autonomic function. The δ-opioidergic system has been recognized as a diagnostic neuropeptide that may be directly involved in neural differentiation, maturation and protection, and may contribute to the possible recovery of emotional dysfunction. Stimulation of δ-opioid receptors of neural progenitor cells enhanced neural differentiation, maturation and protection, which could lead to anti-depressive and anti-anxiolytic effects. We suggest that the δ-opioids may be a good target for the treatment of neuropsychiatric disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CNTF:

Ciliary neurotrophic factor

DAMGO:

[D-Ala2, N-Me- Phe4, Gly5-ol]-enkephalin

EAATs:

Excitatory amino acid transporters

FGFs:

Fibroblast growth factors

GDNF:

Glial-derived neurotrophic factor

GPCRs:

G-protein-coupled receptors

NGF:

Nerve growth factor

NT-3/4:

Neurotrophin-3/4

PDYN:

Prodynorphin

PENK:

Proenkephalin

POMC:

Proopiomelanocortin

SNC80:

[(+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl] -N,N-diethylbenzamide]

U50,488H:

(–)-Trans-(1S,2S)-U-50488 hydrochloride

References

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  PubMed  CAS  Google Scholar 

  • Broom DC, Jutkiewicz EM, Folk JE, Traynor JR, Rice KC, Woods JH (2002) Nonpeptidic δ-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology 26:744–755

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    Article  PubMed  CAS  Google Scholar 

  • Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  PubMed  Google Scholar 

  • Cordonnier L, Sanchez M, Roques BP, Noble F (2005) Facilitation of enkephalins-induced delta-opioid behavioral responses by chronic amisulpride treatment. Neuroscience 135:1–10

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  PubMed  CAS  Google Scholar 

  • Ehringer D, Kempermann G (2003) Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 13:845–851

    Article  Google Scholar 

  • Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A 97:7579–7584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Georganta EM, Tsoutsi L, Gaitanou M, Georgoussi Z (2013) δ-opioid receptor activation leads to neurite outgrowth and neuronal differentiation via a STAT5B-Gαi/o pathway. J Neurochem 127:329–341

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95:3168–3171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    Article  PubMed  CAS  Google Scholar 

  • Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36:2589–2602

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan MS, Bell DH (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4:1429–1441

    PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768–5773

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T, Narita M (2011) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21:127–132

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, Xia Y (2014) δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171:5417–5430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lutz PE, Kieffer BL (2013) Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36:195–206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    Article  PubMed  CAS  Google Scholar 

  • Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406:449–460

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Funada M, Suzuki T (2001) Regulations of opioid dependence by opioid receptor types. Pharmacol Ther 89:1–15

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Kuzumaki N, Narita M, Kaneko C, Tamai E, Khotib J, Miyatake M, Shindo K, Nagumo Y, Tanaka S, Suzuki T (2005) Age-related emotionality is associated with cortical δ-opioid receptor dysfunction-dependent astrogliosis. Neuroscience 137:1359–1367

    Article  Google Scholar 

  • Narita M, Kuzumaki N, Miyatake M, Sato F, Wachi H, Seyama Y, Suzuki T (2006a) Role of delta-opioid receptor function in neurogenesis and neuroprotection. J Neurochem 97:1494–1505

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Kuzumaki N, Narita M, Kaneko C, Hareyama N, Miyatake M, Shindo K, Miyoshi K, Nakajima M, Nagumo Y, Sato F, Wachi H, Seyama Y, Suzuki T (2006b) Chronic pain-induced emotional dysfunction is associated with astrogliosis due to cortical delta-opioid receptor dysfunction. J Neurochem 97:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS (1999) Enriched enviroment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39:569–578

    Article  PubMed  CAS  Google Scholar 

  • Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, Terenius L, Eriksson PS (2003) Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 17:1159–1172

    Article  PubMed  Google Scholar 

  • Quintero EM, Willis LM, Zaman V, Lee J, Boger HA, Tomac A, Hoffer BJ, Strömberg I, Granholm AC (2004) Glial cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeruleus-hippocampal noradrenergic pathway. Neuroscience 124:137–146

    Article  PubMed  CAS  Google Scholar 

  • Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behavior. Nature 476:458–461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72:399–406

    PubMed  CAS  Google Scholar 

  • Torregrossa MM, Isgor C, Folk JE, Rice KC, Watson SJ, Woods JH (2004) The delta-opioid receptor agonist (+) BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology 29:649–659

    Article  PubMed  CAS  Google Scholar 

  • Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH (2006) Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Res 1069:172–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsao LI, Su TP (2001) Hibernation-induction peptide and cell death: [-Ala2,-Leu5]enkephalin blocks Bax-related apoptotic processes. Eur J Pharmacol 428:149–151

    Article  PubMed  CAS  Google Scholar 

  • Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Wang S, Scott BW, Wojtowicz JM (2000) Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol 42:248–257

    Article  PubMed  CAS  Google Scholar 

  • Wang HD, Dunnavant FD, Jarman T, Deutch AY (2004) Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29:1230–1238

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Stull ND, Berk MA, Snyder EY, Iacovitti L (2002) Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Exp Neurol 177:50–60

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Torregrossa MM, Jutkiewicz EM, Shi YG, Rice KC, Woods JH, Watson SJ, Ko MC (2006) Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through delta- and micro-opioid receptors independent of antidepressant-like effects. Eur J Neurosci 23:984–994

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Law PY, Loh HH (2012) Non-coding RNAs regulating morphine function: with emphasis on the in vivo and in vitro functions of miR-190. Front Genet 3:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoko Kuzumaki Ph.D. or Minoru Narita Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuzumaki, N., Narita, M. (2015). δ-Opioids and Neurogenesis. In: Xia, Y. (eds) Neural Functions of the Delta-Opioid Receptor. Springer, Cham. https://doi.org/10.1007/978-3-319-25495-1_9

Download citation

Publish with us

Policies and ethics