Skip to main content

Matched Filters in Insect Audition: Tuning Curves and Beyond

  • Chapter
  • First Online:
The Ecology of Animal Senses

Abstract

The sense of hearing evolved in insects many times independently, and different groups use sound for intraspecific communication, predator detection, and host finding. Although it can be generally assumed that ears and associated auditory pathways are matched to the relevant properties of acoustic signals and cues, the behavioral contexts, environmental conditions, and selection pressures for hearing may differ strongly between insects. Given the diversity in ear structure, active range of hearing, and the behavioral and ecological context under which hearing evolved, it is probably not surprising to find cases of sensory systems apparently mismatched to relevant parameters of the physical world. Indeed, such cases may be equally instructive for the principle of matching as the perfectly matched ones, since they may tell us something about the conflicting selection pressures and trade-offs associated with a given solution. The examples I have chosen cover the most traditional aspect of matching in the acoustic domain, namely, how the carrier frequency of the relevant sound is matched to the tuning of receivers and how central nervous processing allows species-specific responses to the temporal parameters of song. However, economical filtering also occurs in the intensity domain, starting as early as in the receptors and continuing at the first synapse of central processing. All examples serve to illustrate the similarities and differences between the sensory systems; both may help to define the conditions under which matching operates and may have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BF:

Best frequency

CF:

Carrier frequency

HF:

High frequency

IID:

Interaural intensity difference

IPI:

Inter-pulse interval

ITD:

Interaural time difference

SPL:

Sound pressure level

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Ashmore J, Gale J (2004) The cochlear amplifier. Curr Biol 14:R404

    Google Scholar 

  • Bailey WJ (2003) Insect duets: their mechanisms and underlying evolution. Physiol Entomol 28:157–174

    Google Scholar 

  • Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353

    Google Scholar 

  • Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 227–261

    Google Scholar 

  • Bentsen CL, Hunt J, Jennions MD, Brooks R (2006) Complex multivariate sexual selection on male acoustic signaling in a wild population of Teleogryllus commodus. Am Nat 167(4):E102–E116

    Google Scholar 

  • Brooks R, Hunt J, Blows MW, Smith MJ, Bussière LF, Jennions MD (2005) Experimental evidence for multivariate stabilizing sexual selection. Evolution 59:871–880

    Google Scholar 

  • Brown WD, Wideman J, Andrade MCB, Mason AC, Gwynne DT (1996) Female choice for an indicator of male size in the song of the black-horned tree cricket, Oecanthus nigricornis (Orthoptera: Gryllidae: Oecanthinae). Evolution 50:2400–2411

    Google Scholar 

  • Budick SA, Reiser MB, Dickinson MH (2007) The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster. J Exp Biol 210:4092–4103

    Google Scholar 

  • Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192:113–121

    Google Scholar 

  • Cade WH (1975) Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190:1312–1313

    Google Scholar 

  • Caldwell J, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189

    CAS  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Capranica RR, Ingle D, Ewert JP (eds) Vertebrate neuroethology. Plenum, New York, pp 701–730

    Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech with one and with two ears. J Acoust Soc Am 25:975–979

    Google Scholar 

  • Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35:75–85

    Google Scholar 

  • Clemens J, Ronacher B (2013) Feature extraction and integration underlying perceptual decision making during courtship in grasshoppers. J Neurosci 33:12136–12145

    CAS  Google Scholar 

  • Coro F, Kössl M (1998) Distortion-product otoacoustic emissions from the tympanic organ in two noctuid moths. J Comp Physiol A 183:525–531

    Google Scholar 

  • Coro F, Kössl M (2001) Components of the 2f(1)-2f(2) distortion-product otoacoustic emission in a moth. Hear Res 162:126–133

    CAS  Google Scholar 

  • Ehret G, Moffat AJM, Tautz J (1982) Behavioral determination of frequency resolution in the ear of the cricket, Teleogryllus oceanicus. J Comp Physiol 148:237–244

    Google Scholar 

  • Elliott CJH, Koch UT (1985) The clockwork cricket. Naturwissenschaftlichen 72:150–153

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153

    Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–28

    Google Scholar 

  • Fonseca PJ, Münch D, Hennig RM (2000) How cicadas interpret acoustic signals. Nature 405:297–298

    CAS  Google Scholar 

  • Fullard JH (1998) The sensory coevolution of moths and bats. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 279–326

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463

    CAS  Google Scholar 

  • Göpfert MC (2008) Amplification and feedback in invertebrates. In: Dallos P, Oertel D (eds) Audition, vol 3, The senses: a comprehensive reference. Elsevier, Amsterdam, pp 293–299

    Google Scholar 

  • Göpfert MC, Robert D (2001a) Active auditory mechanics in mosquitoes. Proc R Soc Lond B 268:333–339

    Google Scholar 

  • Göpfert MC, Robert D (2001b) Turning the key on Drosophila audition. Nature 411:908

    Google Scholar 

  • Göpfert MC, Robert D (2002) The mechanical basis of Drosophila audition. J Exp Biol 205:1199–1208

    Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci U S A 100:5514–5519

    Google Scholar 

  • Göpfert MC, Robert D (2008) Active processes in insect hearing. In: Manley GA, Fay RR, Popper AN (eds) Active mechanics and otoacoustic emissions, vol 30, Springer handbook of auditory research. Springer, Heidelberg, pp 191–210

    Google Scholar 

  • Göpfert MC, Briegel H, Robert D (1999) Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J Exp Biol 202:2727–2738

    Google Scholar 

  • Greenfield MD (1994) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. Ann Rev Ecol Evol Syst 25:97–126

    Google Scholar 

  • Hardt M (1988) Zur Phonotaxis von Laubheuschrecken: Eine vergleichende verhaltensphysiologische und neurophysiologisch-anatomische Untersuchung. PhD thesis, University of Bochum

    Google Scholar 

  • Hedwig B, Pollack GS (2008) Invertebrate auditory pathways. In: Basbaum AI, Akimichi K, Shepard GM, Westheiner G, Dallos P, Oertel D (eds) Invertebrate auditory pathways. The senses: a comprehensive reference. Academic, San Diego, pp 525–564

    Google Scholar 

  • Heller K-G, von Helversen D (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198

    Google Scholar 

  • Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189:589–598

    CAS  Google Scholar 

  • Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63:351–374

    CAS  Google Scholar 

  • Hildebrandt KJ (2014) Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 24:82–87

    CAS  Google Scholar 

  • Hildebrandt KJ, Benda J, Hennig RM (2014) Computational themes of peripheral processing in the auditory pathway of insects. J Comp Physiol A. doi:10.1007/s00359-014-0956-5

    Google Scholar 

  • Hill KG, Boyan GS (1976) Directional hearing in crickets. Nature 262:390–391

    CAS  Google Scholar 

  • Hoy RR (1978) Acoustic communication in cricket: a model system for the study of feature detection. Fed Proc 37:2316–2323

    CAS  Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DG, Popper AN, Fay RR (eds) The evolutionary biology of hearing. Springer, New York, pp 115–130

    Google Scholar 

  • Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450

    CAS  Google Scholar 

  • Hoy RR, Popper AN, Fay RR (eds) (1998) Comparative hearing: insects. Springer, New York

    Google Scholar 

  • Huber F, Kleindienst HU, Moore TH, Schildberger K, Weber TH (1990) Acoustic communication in periodical cicadas: neuronal responses to songs of sympatric species. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods; advances in life sciences. Birkhäuser Verlag, Basel, pp 217–228

    Google Scholar 

  • Hudspeth AJ (1997) Mechanical amplification by hair cells. Curr Opin Neurobiol 7:480–486

    CAS  Google Scholar 

  • Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

    CAS  Google Scholar 

  • Imaizumi K, Pollack GS (1999) Neural coding of sound frequency by cricket auditory receptors. J Neurosci 19:1508–1516

    CAS  Google Scholar 

  • Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285

    Google Scholar 

  • Johnson C (1855) Auditory apparatus of the Culex mosquito. Q J Microsc Sci 3:97–102

    Google Scholar 

  • Kavlie RG, Fritz JL, Nies F, Göpfert MC, Oliver D, Albert JT, Eberl DF (2014) Prestin is an anion transporter dispensable for mechanical feedback amplification in Drosophila hearing. J Comp Physiol A. doi:10.1007/s00359-014-0960-9

    Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behavior of the bushcricket Tettigonia cantans. II. Transmission of airborne sound and vibration signals in the biotope. Behav Processes 8:125–145

    CAS  Google Scholar 

  • Klump GM (1996) Bird communication in a noisy world. In: Miller EH, Kroodsma DE (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 321–338

    Google Scholar 

  • Kössl M, Boyan GS (1998) Distortion-product otoacoustic emissions from the ear of a grasshopper. J Acoust Soc Am 104:326–335

    Google Scholar 

  • Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32(28):9601–9961

    CAS  Google Scholar 

  • Kostarakos K, Hedwig B (2014) Pattern recognition in field crickets: concepts and neural evidence. J Comp Physiol A. doi:10.1007/s00359-014-0949-4

    Google Scholar 

  • Kostarakos K, Römer H (2015) Neural mechanisms for acoustic signal detection under strong masking in an insect. J Neurosci 35(29):10562–10571

    CAS  Google Scholar 

  • Kostarakos K, Hartbauer M, Römer H (2008) Matched filters, mate choice and the evolution of sexually selected traits. PLoS One 3:e3005

    Google Scholar 

  • Kostarakos K, Hennig MR, Römer H (2009) Two matched filters and the evolution of mating signals in four species of cricket. Front Zool 6:22

    Google Scholar 

  • Lakes-Harlan R, Lehmann GUC (2014) Parasitoid flies exploiting acoustic communication of insects – comparative aspects of independent functional adaptations. In: Römer H, Ronacher B (eds) Insect hearing: from physics to ecology. J Comp Physiol. doi:10.1007/s00359-014-0958-3

    Google Scholar 

  • Lakes-Harlan R, Stumpner A, Allen G (1995) Functional adaptations of the auditory system of two parasitoid fly species, Therobia leonidei and Homotrixa spec. In: Burrows M, Matheson T, Newland P, Schuppe H (eds) Nervous systems and behavior. ThiemeVerlag Stuttgart, New York, p 358

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of insect hearing organs from a preadaptive structure. Proc R Soc Lond B 266:1161–1167

    Google Scholar 

  • Lang A, Teppner I, Hartbauer M, Römer H (2005) Predation and noise in communication networks of neotropical katydids. In: McGregor P (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 152–169

    Google Scholar 

  • Lehmann GUC (2003) Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insects, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool Anz 242:107–120

    Google Scholar 

  • Mason AC (1991) Hearing in a primitive ensiferan: the auditory system of Cyphoderris mostrosa (Orthopterea: Haglidae). J Comp Physiol 168:351–363

    Google Scholar 

  • Mason AC, Morris GK, Hoy RR (1999) Peripheral frequency mis-match in the primitive ensiferan Cyphoderris monstrosa (Orthoptera: Haglidae). J Comp Physiol A 184:543–551

    CAS  Google Scholar 

  • Metrani S, Balakrishnan R (2005) The utility of song and morphological characters in delineating species boundaries among sympatric tree crickets of the genus Oecanthus (Orthoptera: Gryllidae: Oecanthinae): a numerical taxonomic approach. J Orthoptera Res 14:1–16

    Google Scholar 

  • Meyer J, Elsner N (1996) How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra? J Exp Biol 199:1631–1642

    CAS  Google Scholar 

  • Mhatre N (2014) Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A. doi:10.1007/s00359-014-0969-0

    Google Scholar 

  • Mhatre N, Bhattacharya M, Robert D, Balakrishnan R (2011) Matching sender and receiver: poikilothermy and frequency tuning in a tree cricket. J Exp Biol 214:2569–2578

    Google Scholar 

  • Michelsen A (1968) Frequency discrimination in the locust ear by means of four groups of receptor cells. Nature 220:585–586

    CAS  Google Scholar 

  • Michelsen A (1998) The tuned cricket. News Physiol Sci 13:32–38

    Google Scholar 

  • Michelsen A, Löhe G (1995) Tuned directionality in cricket ears. Nature 375:639

    CAS  Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering response of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci U S A 75:4052–4056

    CAS  Google Scholar 

  • Montealegre-Z F, Morris GK (1999) Songs and systematics of some Tettigoniidae from Columbia and Equador I. Pseudophyllinae (Orthoptera). J Orthoptera Res 8:163–236

    Google Scholar 

  • Montealegre-Z F, Morris GK, Mason AC (2006) Generation of extreme ultrasonics in rainforest katydids. J Exp Biol 209:4923–4937

    Google Scholar 

  • Montealegre-Z F, Jonsson T, Robert D (2011) Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae). J Exp Biol 214:2105–2117

    Google Scholar 

  • Montealegre-Z F, Jonsson T, Robson-Brown T, Postles KA, Robert DM (2012) Convergent evolution between insect and mammalian audition. Science 338:968–971

    CAS  Google Scholar 

  • Morris GK, Mason AC, Wall P (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool 233:129–163

    Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    CAS  Google Scholar 

  • Oldfield BP (1982) Tonotopic organisation of auditory receptors in tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469

    Google Scholar 

  • Palghat Udayashankar A, Kössl M, Nowotny M (2012) Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS One 7(2), e31008. doi:10.1371/ journal.pone.0031008

    CAS  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    CAS  Google Scholar 

  • Pollack GS (2014) Neurobiology of acoustically mediated predator detection. In: Römer H, Ronacher B (eds) Insect hearing: from physics to ecology. J Comp Physiol A. doi 10.1007/s00359-014-0948-5

  • Pollack GS, Hoy RR (1989) Evasive acoustic behavior and its neurobiological basis. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 340–363

    Google Scholar 

  • Pollack GS, Imaizumi K (1999) Neural analysis of sound frequency in insects. Bioessays 21:295–303

    Google Scholar 

  • Popov AV (1981) Sound production and hearing in the cicada, Cicadetta sinuatipennis Osh. (Homoptera, Cicadidae). J Comp Physiol 142:271–280

    Google Scholar 

  • Portfors CV, Roberts PD (2014) Mismatch of structural and functional tonotopy for natural sounds in the auditory midbrain. Neuroscience 258:192–203

    CAS  Google Scholar 

  • Riabinia O, Dai M, Duke T, Albert JT (2011) Active process mediates species-specific tuning of Drosophila ears. Curr Biol 21:658–664

    Google Scholar 

  • Robert D (2005) Directional hearing in insects. In: Fay RR, Popper AN (eds) Sound source localization. Springer, New York, pp 6–35

    Google Scholar 

  • Robert D, Göpfert M (2002) Novel schemes for hearing and orientation in insects. Curr Opin Neurobiol 12:715–720

    CAS  Google Scholar 

  • Robert D, Amoroso J, Hoy RR (1992) The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science 258:1135–1137

    CAS  Google Scholar 

  • Robinson DJ, Rheinlaender J, Hartley JC (1986) Temporal parameters of male-female sound communication in Leptophyes punctatissima. Physiol Entomol 11:317–323

    Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organ of noctuid moths. J Exp Zool 134:127–157

    CAS  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria. J Comp Physiol A 109:101–122

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62

    Google Scholar 

  • Römer H (1985) Anatomical representation of frequency and intensity in the auditory system of Orthoptera. In: Elsner N, Kalmring K (eds) Acoustic and vibrational communication in insects. Paul Parey, Hamburg, pp 25–32

    Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42

    Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 63–96

    Google Scholar 

  • Römer H (2014) Masking by noise in acoustic insects: Problems and solutions. In: Brumm H (ed) Animal communication and noise; animal signals and communication 2, doi:10.1007/978-3-642-41494-7_3

    Google Scholar 

  • Römer H, Bailey WJ (1986) Insect hearing in the field. II. Male spacing behavior and correlated acoustic cues in the bushcricket Mygalopsis marki. J Comp Physiol A 159:627–638

    Google Scholar 

  • Römer H, Bailey W (1998) Strategies for hearing in noise: peripheral control over auditory sensitivity in the bushcricket Sciarasaga quadrata (Austrosaginae:Tettigoniidae). J Exp Biol 201:1023–1033

    Google Scholar 

  • Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). J Comp Physiol A 186:181–191

    Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Google Scholar 

  • Römer H, Spickermann M, Bailey W (1998) Sensory basis for sound intensity discrimination in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera). J Comp Physiol A 182:595–607

    Google Scholar 

  • Ronacher B (2014) Processing of species-specific signals in the auditory pathway of grasshoppers. In: Hedwig B (ed) Insect hearing and acoustic communication, vol 1, Animal signals and communication. Springer, Berlin, pp 185–204

    Google Scholar 

  • Ronacher B, Hennig RM, Clemens J (2014) Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. J Comp Physiol A. doi:10.1007/s00359-014-0946-7

    Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. Am Nat 139:S4–S35

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis: I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163:621–631

    Google Scholar 

  • Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: neuronal correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press Ithaca, New York, pp 423–458

    Google Scholar 

  • Schmidt AKD, Römer H (2011) Solutions to the cocktail party problem in insects: selective filters, spatial release from masking and gain control in tropical crickets. PLoS One 6(12):e28593. doi:10.1371/journal.pone.0028593

    CAS  Google Scholar 

  • Schmidt AKD, Römer H (2013) Diversity of acoustic tracheal system and its role for directional hearing in crickets. Front Zool 10:61. doi:10.1186/1742-9994-10-61

    Google Scholar 

  • Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    Google Scholar 

  • Schul J, Matt F, von Helversen O (2000) Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Proc R Soc Lond 267:1711–1715

    CAS  Google Scholar 

  • Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol 198:695–704

    Google Scholar 

  • Shorey HH (1962) Nature of the sound produced by Drosophila melanogaster during courtship. Science 137:677–678

    CAS  Google Scholar 

  • Siegert ME, Römer H, Hartbauer M (2013) Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation. J Exp Biol 216:4655–4665

    CAS  Google Scholar 

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptor cells in the bushcricket Pholidoptera griseoaptera (De Geer 1771) (Tettigoniidae, Decticini). Cell Tissue Res 294:377–386

    Google Scholar 

  • Strauß J, Lehmann GUC, Lehmann AW, Lakes-Harlan R (2012) Spatial organization of Tettigoniid auditory receptors: insights from neuronal tracing. J Morphol 273:1280–1290

    Google Scholar 

  • Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket. Physiological characterization and complete staining of auditory receptor cells. Naturwissenschaftlichen 83:81–84

    CAS  Google Scholar 

  • Stumpner A (1998) Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket. J Neurophysiol 79:2408–2415

    CAS  Google Scholar 

  • Stumpner A, Novotny M (2014) Neural processing in the bushcricket auditory pathway. In: Hedwig B (ed) Insect hearing and acoustic communication. Springer, Berlin. doi:10.1007/978-3-642-40462-7_9

    Google Scholar 

  • Stumpner A, Allen GR, Lakes-Harlan R (2007) Hearing and frequency dependence of auditory interneurons in the parasitoid fly Homotrixa alleni (Tachinidae: Ormiini). J Comp Physiol A 193:1113–1125

    Google Scholar 

  • Surlykke A, Filskov M (1999) Auditory relationship to size in noctuid moths: bigger is better. Naturwissenschaftlichen 86:238–241

    CAS  Google Scholar 

  • ter Hofstede HM, Goerlitz HR, Ratcliffe JM, Holderied MW, Surlykke A (2013) The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community. J Exp Biol 216:3954–3962

    Google Scholar 

  • Thiele D, Bailey WJ (1980) The function of sound in male spacing behavior in bush-crickets (Tettigoniidae, Orthoptera). Aust J Ecol 5:275–286

    Google Scholar 

  • van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394:773–776

    Google Scholar 

  • van Staaden MJ, Rieser M, Ott SR, Papst MA, Römer H (2003) Serial hearing organs in the atympanate grasshopper Bullacris membracioides (Orthoptera, Pneumoridae). J Comp Neurol 465:579–592

    Google Scholar 

  • Vaughan AG, Chuan Z, Manoli DS, Baker BS (2014) Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Curr Biol 24:1039–1049. doi:10.1016/j.cub.2014.03.048

    CAS  Google Scholar 

  • von Helversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 81:381–422

    Google Scholar 

  • Walker T (1957) Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann Entomol Soc Am 50:626–636

    Google Scholar 

  • Wehner R (1987) “Matched filters”—neural models of the external world. J Comp Physiol A 161:511–531

    Google Scholar 

  • Wendler G, Löhe G (1993) The role of the medial septum in the acoustic trachea of the cricket Gryllus bimaculatus. J Comp Physiol A 173:557–564

    Google Scholar 

  • Windmill J, Jackson J, Tuck E, Robert D (2006) Keeping up with bats: dynamic auditory tuning in a moth. Curr Biol 16:2418–2423

    CAS  Google Scholar 

  • Wyttenbach RA, Farris HE (2004) Psychophysics in insect hearing. Microsc Res Tech 63:375–387

    Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    CAS  Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337

    Google Scholar 

  • Yack JE, Fullard JH (1993) What is an insect ear? Ann Entomol Soc Am 86:677–682

    Google Scholar 

  • Yack JE, Fullard JH (2000) Ultrasonic hearing in nocturnal butterflies. Nature 403:265–266

    CAS  Google Scholar 

  • Yager DD (1999) Structure, development and evolution of insect auditory systems. Microsc Res Tech 47:380–400

    CAS  Google Scholar 

  • Yager DD, Hoy RR (1989) Audition in the praying mantis, Mantis religiosa L.: identification of an interneuron mediating ultrasonic hearing. J Comp Physiol A 165:471–493

    CAS  Google Scholar 

  • Yager DD, Cook AP, Pearson DL, Spangler HG (2000) A comparative study of ultrasound-triggered behaviour in tiger beetles (Cicindelidae). J Zool Lond 251:355–368

    Google Scholar 

  • Zimmermann U, Rheinlaender J, Robinson DJ (1989) Cues for male phonotaxis in the duetting bushcricket Leptophyes punctatissima. J Comp Physiol A 164:621–628

    Google Scholar 

Download references

Acknowledgments

Own research mentioned in this review was funded by the Austrian Science Fund (FWF) through grants P17986-B06, P20882-B09, P23896-B24, and P26072-B25 to HR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Römer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Römer, H. (2016). Matched Filters in Insect Audition: Tuning Curves and Beyond. In: von der Emde, G., Warrant, E. (eds) The Ecology of Animal Senses. Springer, Cham. https://doi.org/10.1007/978-3-319-25492-0_4

Download citation

Publish with us

Policies and ethics