Role of Small RNAs in Virus-Host Interaction

  • Mikhail M. PoogginEmail author


Short-interfering RNAs (siRNAs) and microRNAs (miRNAs) play an important role in regulation of host gene expression and defense against invasive nucleic acids such as transposons, transgenes, and viruses. In plants, siRNA-directed silencing is a major defense mechanism that restricts replication and spread of RNA and DNA viruses as well as viroids and viral satellites. During viral infection, host Dicer-like (DCL) enzymes catalyze production of 21-, 22-, and 24-nucleotide viral siRNA duplexes from longer double-stranded RNA (dsRNA) precursors generated by viral and/or host RNA polymerases. These duplexes are sorted by several distinct Argonaute (AGO) proteins to form RNA-induced silencing complexes (RISCs) that can potentially target cognate viral RNA for posttranscriptional gene silencing (PTGS) and, in the case of DNA viruses, also viral DNA for cytosine methylation and transcriptional gene silencing (TGS). To establish successful infection, plant viruses have evolved various mechanisms of silencing evasion as well as silencing suppression through effector proteins that interfere with the biogenesis and/or action of viral siRNAs. Furthermore, viruses appear to manipulate host siRNAs and miRNAs which may contribute to antiviral defense indirectly, through regulation of the host genes mediating silencing and innate immunity.


Cucumber Mosaic Virus Tobacco Rattle Virus Transcriptional Gene Silence Silence Suppression Secondary siRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Thomas Boller for supporting research of my group at the University of Basel. The research work of my group is being funded by Swiss National Science Foundation (grant 31003A_143882/1).


  1. Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Kaff NS, Covey SN, Kreike MM, Page AM, Pinder R, Dale PJ (1998) Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279:2113–2115PubMedCrossRefGoogle Scholar
  3. Al-Kaff NS, Kreike MM, Covey SN, Pitcher R, Page AM, Dale PJ (2000) Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nat Biotechnol 18:995–999PubMedCrossRefGoogle Scholar
  4. Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjärvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8:e1002941PubMedPubMedCentralCrossRefGoogle Scholar
  6. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577PubMedCrossRefGoogle Scholar
  7. Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:904–915PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  9. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins F Jr, Hohn T, Pooggin MM (2011) Massive production of small RNAs from a non-coding region of cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39:5003–5014PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10:e1003883PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Physiol Plant Mol Biol 60:379–406CrossRefGoogle Scholar
  13. Bonardi V, Cherkis K, Nishimura MT, Dangl JL (2012) A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24:41–50PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A 104:14741–14746PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burgyan J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272PubMedCrossRefGoogle Scholar
  18. Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A 111:12942–12947PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, Gal-On A, Zhou C, Li Y, Ding SW (2014) Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 111:14613–14618PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–3629PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cenik ES, Zamore PD (2011) Argonaute proteins. Curr Biol 21:R446–R449PubMedCrossRefGoogle Scholar
  22. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896PubMedCrossRefGoogle Scholar
  23. Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A 102:10381–10386PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ciomperlik JJ, Omarov RT, Scholthof HB (2011) An antiviral RISC isolated from tobacco rattle virus-infected plants. Virology 412:117–124PubMedPubMedCentralCrossRefGoogle Scholar
  25. Covey SN, Al-Kaff NS, Lángara A, Turner DS (1997) Plants combat infection by gene silencing. Nature 385:781–782CrossRefGoogle Scholar
  26. Csorba T, Bovi A, Dalmay T, Burgyán J (2007) The p122 subunit of tobacco Mosaic Virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81:11768–11780PubMedPubMedCentralCrossRefGoogle Scholar
  27. Curaba J, Chen X (2008) Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem 283:3059–3066PubMedCrossRefGoogle Scholar
  28. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313:68–71PubMedCrossRefGoogle Scholar
  29. Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R (2010) RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 84:2477–2489PubMedCrossRefGoogle Scholar
  30. Donaire L, Barajas D, Martínez-García B, Martínez-Priego L, Pagán I, Llave C (2008) Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol 82:5167–5177PubMedPubMedCentralCrossRefGoogle Scholar
  31. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214PubMedCrossRefGoogle Scholar
  32. Dong X, van Wezel R, Stanley J, Hong Y (2003) Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 77:7026–7033PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916PubMedCrossRefGoogle Scholar
  34. Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175PubMedPubMedCentralCrossRefGoogle Scholar
  36. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip Mosaic Virus infection. Plant Cell 22:481–496PubMedPubMedCentralCrossRefGoogle Scholar
  37. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 105:157–161, Erratum in: 106:4571PubMedCrossRefGoogle Scholar
  38. Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48:811–818PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102–2112PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hagen C, Rojas MR, Kon T, Gilbertson RL (2008) Recovery from cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029–1037PubMedCrossRefGoogle Scholar
  41. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  42. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679PubMedPubMedCentralCrossRefGoogle Scholar
  43. Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639PubMedPubMedCentralCrossRefGoogle Scholar
  44. Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334PubMedPubMedCentralCrossRefGoogle Scholar
  45. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T (2011) Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci U S A 108:409–414PubMedCrossRefGoogle Scholar
  47. Hohn T, Rothnie H (2013) Plant pararetroviruses: replication and expression. Curr Opin Virol 3:621–628PubMedCrossRefGoogle Scholar
  48. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hu Q, Hollunder J, Niehl A, Kørner CJ, Gereige D, Windels D, Arnold A, Kuiper M, Vazquez F, Pooggin M, Heinlein M (2011) Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS One 6:e19549PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hull R (2002) Matthews’ plant virology, 4th edn. Academic, San DiegoGoogle Scholar
  51. Hull R (2007) Caulimoviridae (Plant Pararetroviruses). In: eLS. Wiley Ltd, Chichester. [doi:  10.1002/9780470015902.a0000746.pub2]
  52. Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392PubMedCrossRefGoogle Scholar
  53. Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B (2007) A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 81:2980–2994PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  55. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7PubMedCrossRefGoogle Scholar
  56. Kurihara Y, Inaba N, Kutsuna N, Takeda A, Tagami Y, Watanabe Y (2007) Binding of tobamovirus replication protein with small RNA duplexes. J Gen Virol 88:2347–2352PubMedCrossRefGoogle Scholar
  57. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204PubMedCrossRefGoogle Scholar
  61. Love AJ, Laird J, Holt J, Hamilton AJ, Sadanandom A, Milner JJ (2007) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444PubMedCrossRefGoogle Scholar
  62. Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7:e47535PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lózsa R, Csorba T, Lakatos L, Burgyán J (2008) Inhibition of 3′ modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36:4099–4107PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303PubMedCrossRefGoogle Scholar
  65. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45:1029–1039PubMedCrossRefGoogle Scholar
  67. Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G (2014) A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 42:1553–1562PubMedCrossRefGoogle Scholar
  68. Martín-Hernández AM, Baulcombe DC (2008) Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J Virol 82:4064–4071PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedPubMedCentralCrossRefGoogle Scholar
  70. Miozzi L, Gambino G, Burgyan J, Pantaleo V (2013) Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol Plant Pathol 14:30–43PubMedCrossRefGoogle Scholar
  71. Molnar A, Csorba T, Lakatos L, Várallyay E, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818PubMedPubMedCentralCrossRefGoogle Scholar
  72. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875PubMedCrossRefGoogle Scholar
  73. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefGoogle Scholar
  74. Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639PubMedPubMedCentralCrossRefGoogle Scholar
  75. Muangsan N, Beclin C, Vaucheret H, Robertson D (2004) Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38:1004–1014PubMedCrossRefGoogle Scholar
  76. Nagano H, Fukudome A, Hiraguri A, Moriyama H, Fukuhara T (2013) Distinct substrate specificities of Arabidopsis DCL3 and DCL4. Nucleic Acids Res 42:1845–1856PubMedPubMedCentralCrossRefGoogle Scholar
  77. Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003PubMedCrossRefGoogle Scholar
  78. Noreen F, Akbergenov R, Hohn T, Richert-Pöggeler KR (2007) Distinct expression of endogenous petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J 50:219–229PubMedCrossRefGoogle Scholar
  79. Omarov RT, Ciomperlik JJ, Scholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci U S A 104:1714–1719PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806PubMedPubMedCentralCrossRefGoogle Scholar
  81. Paprotka T, Deuschle K, Metzler V, Jeske H (2011) Conformation-selective methylation of geminivirus DNA. J Virol 85:12001–12012PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366PubMedCrossRefGoogle Scholar
  83. Pikaard CS, Haag JR, Pontes OM, Blevins T, Cocklin R (2012) A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation. Cold Spring Harb Symp Quant Biol 77:205–212PubMedCrossRefGoogle Scholar
  84. Pooggin MM (2013) How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci 14:15233–15259PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pooggin MM, Fütterer J, Skryabin KG, Hohn T (1999) A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80:2217–2228PubMedCrossRefGoogle Scholar
  86. Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132PubMedCrossRefGoogle Scholar
  87. Pooggin MM, Fütterer J, Hohn T (2008) Cross-species functionality of pararetroviral elements driving ribosome shunting. PLoS One 3:e1650PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760PubMedCrossRefGoogle Scholar
  89. Purkayastha A, Mathur S, Verma V, Sharma S, Dasgupta I (2010) Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta 232:1531–1540PubMedCrossRefGoogle Scholar
  90. Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737PubMedPubMedCentralCrossRefGoogle Scholar
  91. Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997–9007PubMedPubMedCentralCrossRefGoogle Scholar
  92. Raja P, Wolf JN, Bisaro DM (2010) RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta 1799:337–351PubMedCrossRefGoogle Scholar
  93. Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622Google Scholar
  94. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rajeswaran R, Pooggin MM (2012a) RDR6-mediated synthesis of complementary RNA is terminated by miRNA stably bound to template RNA. Nucleic Acids Res 40:594–599PubMedCrossRefGoogle Scholar
  96. Rajeswaran R, Pooggin MM (2012b) Role of virus-derived small RNAs in plant antiviral defense: insights from DNA viruses. In: Sunkar R (ed) MicroRNAs in plant development and stress response. Springer, Berlin/Heidelberg, pp 261–289CrossRefGoogle Scholar
  97. Rajeswaran R, Aregger M, Zvereva AS, Borah BK, Gubaeva EG, Pooggin MM (2012) Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res 40:6241–6254PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rajeswaran R, Golyaev V, Seguin J, Zvereva AS, Farinelli L, Pooggin MM (2014a) Interactions of rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA-silencing machinery. Mol Plant Microbe Interact 27:1370–1378PubMedCrossRefGoogle Scholar
  99. Rajeswaran R, Seguin J, Chabannes M, Duroy PO, Laboureau N, Farinelli L, Iskra-Caruana ML, Pooggin MM (2014b) Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses. J Virol 88:11516–11528PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1216PubMedPubMedCentralCrossRefGoogle Scholar
  101. Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519PubMedCrossRefGoogle Scholar
  102. Rodríguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2009) RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340PubMedCrossRefGoogle Scholar
  103. Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475PubMedCrossRefGoogle Scholar
  104. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  105. Ryabova LA, Pooggin MM, Hohn T (2002) Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72:1–39PubMedCrossRefGoogle Scholar
  106. Scholthof HB, Alvarado VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D, Brosseau C, Jaubert M, Zamora A, Moffett P (2011) Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. Plant Physiol 156:1548–1555PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schuck J, Gursinsky T, Pantaleo V, Burgyán J, Behrens SE (2013) AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Res 41:5090–5103PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852PubMedPubMedCentralCrossRefGoogle Scholar
  109. Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact 16:429–438PubMedCrossRefGoogle Scholar
  110. Seguin J, Rajeswaran R, Malpica-López N, Martin RR, Kasschau K, Dolja VV, Otten P, Farinelli L, Pooggin MM (2014) De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs. PLoS One 9:e88513PubMedPubMedCentralCrossRefGoogle Scholar
  111. Seo JK, Wu J, Lii Y, Li Y, Jin H (2013) Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact 26:617–625PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM (2005) Promoters, transcripts and regulatory protein of mungbean yellow mosaic geminivirus. J Virol 79:8149–8163PubMedPubMedCentralCrossRefGoogle Scholar
  114. Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F Jr, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36:5896–5909PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874PubMedPubMedCentralCrossRefGoogle Scholar
  116. Smith NA, Eamens AL, Wang MB (2010) The presence of high-molecular-weight viral RNAs interferes with the detection of viral small RNAs. RNA 16:1062–1067PubMedPubMedCentralCrossRefGoogle Scholar
  117. Smith NA, Eamens AL, Wang MB (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022PubMedPubMedCentralCrossRefGoogle Scholar
  118. Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, Matzke M, Schwarzacher T (2007) Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC Plant Biol 7:24PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309PubMedCrossRefGoogle Scholar
  120. Szittya G, Moxon S, Pantaleo V, Toth G, Rusholme Pilcher RL, Moulton V, Burgyan J, Dalmay T (2010) Structural and functional analysis of viral siRNAs. PLoS Pathog 6:e1000838PubMedPubMedCentralCrossRefGoogle Scholar
  121. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  122. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43PubMedCrossRefGoogle Scholar
  123. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527PubMedPubMedCentralCrossRefGoogle Scholar
  124. Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30:107–114PubMedCrossRefGoogle Scholar
  125. Vanderschuren H, Akbergenov R, Pooggin MM, Hohn T, Gruissem W, Zhang P (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549–557PubMedCrossRefGoogle Scholar
  126. Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498PubMedPubMedCentralCrossRefGoogle Scholar
  127. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771PubMedCrossRefGoogle Scholar
  128. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9:e1003399PubMedPubMedCentralCrossRefGoogle Scholar
  129. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wang MB, Bian XY, Wu LM, Liu LX, Smith NA, Isenegger D, Wu RM, Masuta C, Vance VB, Watson JM, Rezaian A, Dennis ES, Waterhouse PM (2004) On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci U S A 101:3275–3280PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:484–489PubMedCrossRefGoogle Scholar
  133. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151PubMedCrossRefGoogle Scholar
  135. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675PubMedPubMedCentralCrossRefGoogle Scholar
  137. Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X (2011) Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One 6:e16928PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578–2597PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of BaselBaselSwitzerland

Personalised recommendations