Advertisement

Plant Defence and Viral Interference

  • Heiko ZiebellEmail author
Chapter

Abstract

Plants face attack by a number of pathogens, pests and abiotic stresses. Due to their sessile nature, they cannot flee but have to fight their attackers. They have developed numerous mechanisms to fight off pathogens such as viruses. Some of these are genetically determined by resistance genes, coding for factors that might be required for the replication of a virus (recessive resistance genes) or that trigger an active defence via the hypersensitive response to restrict the invading attacker (such as dominant resistance genes). Additionally, adaptive responses such as induced resistance or RNA silencing are further obstacles that might prevent successful infection of a host. In return, viruses have developed several countermeasure strategies in order to infect plants successfully. Some of these strategies are presented in this review.

Keywords

Tobacco Mosaic Virus Cucumber Mosaic Virus Coiled Coil Silence Suppressor Systemic Acquire Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to apologise to those people whose work could not be cited due to space restriction. I thank Wolfgang Maier, Thomas Kühne, Wohlert Wohlers and Christopher Ziebell for very helpful discussions and suggestions.

References

  1. Abbink TEM, Tjernberg PA, Bol JF, Linthorst HJM (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol Plant Microbe Interact 11(12):1242–1246. doi: 10.1094/Mpmi.1998.11.12.1242 Google Scholar
  2. Adams MJ, Heinze C, Jackson AO, Kreuze JF, MacFarlane SA, Torrance L (2012) Family Virgaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy – ninth report of the International Committee on Taxonomy of Viruses. Elsevier, Amsterdam, pp 1139–1162Google Scholar
  3. Agama K, Beach S, Schoelz J, Leisner SM (2002) The 5′ third of cauliflower mosaic virus gene VI conditions resistance breakage in Arabidopsis ecotype Tsu-0. Phytopathology 92(2):190–196. doi: 10.1094/PHYTO.2002.92.2.190 Google Scholar
  4. Alamillo JM, Saenz P, Garcia JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J 48(2):217–227. doi: 10.1111/j.1365-313X.2006.02861.x Google Scholar
  5. Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44(3):429–442, doi:  10.1023/A:1026561029533 Google Scholar
  6. Angel CA, Lutz L, Yang X, Rodriguez A, Adair A, Zhang Y, Leisner SM, Nelson RS, Schoelz JE (2013) The P6 protein of cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments. Virology 443(2):363–374, doi:http://dx.doi.org/10.1016/j.virol.2013.05.028 Google Scholar
  7. Astier S, Albouy J, Maury Y, Robaglia C, Lecoq H (2007) Principles of plant virology. Science Publishers, EnfieldGoogle Scholar
  8. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938–942. doi: 10.1038/nature06069 Google Scholar
  9. Ballare CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16(5):249–257. doi:  10.1016/j.tplants.2010.12.001 Google Scholar
  10. Banday ZZ, Nandi AK (2015) Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci 6:174. doi: 10.3389/fpls.2015.00174
  11. Baughman GA, Jacobs JD, Howell SH (1988) Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc Natl Acad Sci U S A 85(3):733–737. doi:  10.1073/pnas.85.3.733 Google Scholar
  12. Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11(5):781–792. doi: ​ 10.1105/tpc.11.5.781
  13. Bhattacharjee S, Zamora A, Azhar MT, Sacco MA, Lambert LH, Moffett P (2009) Virus resistance induced by NB–LRR proteins involves Argonaute4-dependent translational control. Plant J 58(6):940–951. doi: 10.1111/j.1365-313X.2009.03832.x Google Scholar
  14. Boatwright JL, Pajerowska-Mukhtar K (2013) Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol 14(6):623–634. doi: 10.1111/mpp.12035 Google Scholar
  15. Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP-and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10(1):e1003883. doi: 10.1371/journal.ppat.1003883 Google Scholar
  16. Bonardi V, Cherkis K, Nishimura MT, Dangl JL (2012) A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24(1):41–50. doi:  10.1016/j.coi.2011.12.006 Google Scholar
  17. Broglio EP (1995) Mutational analysis of cauliflower mosaic virus gene VI – changes in host-range, symptoms, and discovery of transactivation-positive, noninfectious mutants. Mol Plant Microbe Interact 8(5):755–760. doi:  10.1094/MPMI-8-0755 Google Scholar
  18. Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas-Castillo J (2009) Family Geminiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy – ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London, pp 351–373Google Scholar
  19. Bruening G (2006) Resistance to infection. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, DordrechtGoogle Scholar
  20. Brustolini OJB, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VAP, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EPB (2015) Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnol J. doi: 10.1111/pbi.12349 Google Scholar
  21. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83(10):5005–5013. doi: 10.1128/jvi.01771-08 Google Scholar
  22. Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16(5):265–272, doi:http://dx.doi.org/10.1016/j.tplants.2011.02.010 Google Scholar
  23. Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170. doi: 10.3389/fpls.2015.00170
  24. Callaway A, Liu WN, Andrianov V, Stenzler L, Zhao JM, Wettlaufer S, Jayakumar P, Howell SH (1996) Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis. Mol Plant Microbe Interact 9(9):810–818. doi:  10.1094/MPMI-9-0810 Google Scholar
  25. Cañizares MC, Lozano-Durán R, Canto T, Bejarano ER, Bisaro DM, Navas-Castillo J, Moriones E (2013) Effects of the crinivirus coat protein–interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. Mol Plant Microbe Interact 26(9):1004–1015. doi: 10.1094/MPMI-02-13-0037-R Google Scholar
  26. Caracuel Z, Lozano-Duran R, Huguet S, Arroyo-Mateos M, Rodriguez-Negrete EA, Bejarano ER (2012) C2 from beet curly top virus promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. New Phytol 194(3):846–858. doi: 10.1111/j.1469-8137.2012.04080.x Google Scholar
  27. Carr JP, Lewsey MG, Palukaitis P (2010) Signaling in induced resistance. Adv Virus Res 76:57–121. doi:  10.1016/S0065-3527(10)76003-6 Google Scholar
  28. Carvalho CM, Santos AA, Pires SR, Rocha CS, Saraiva DI, Machado JPB, Mattos EC, Fietto LG, Fontes EPB (2008) Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus. PLoS Pathog 4(12):e1000247. doi: 10.1371/journal.ppat.1000247 Google Scholar
  29. Cawly J, Cole AB, Kiraly L, Qiu WP, Schoelz JE (2005) The plant gene CCD1 selectively blocks cell death during the hypersensitive response to cauliflower mosaic virus infection. Mol Plant Microbe Interact 18(3):212–219. doi:  10.1094/MPMI-18-0212 Google Scholar
  30. Cecchini E, Gong ZH, Geri C, Covey SN, Milner JJ (1997) Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhibit a range of symptom-like phenotypes and accumulate inclusion bodies. Mol Plant Microbe Interact 10(9):1094–1101. doi:  10.1094/MPMI.1997.10.9.1094 Google Scholar
  31. Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci 97(1):489–494. doi: 10.1073/pnas.97.1.489 Google Scholar
  32. Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127(4):1667–1675. doi: 10.1104/pp. 010479
  33. Chivasa S, Murphy AM, Naylor M, Carr JP (1997) Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9(4):547–557. doi:  10.1105/tpc.9.4.547 Google Scholar
  34. Chung HY, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460:108–118. doi: 10.1016/j.virol.2014.04.034 Google Scholar
  35. Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14(10):521–529. doi:  10.1016/j.tplants.2009.08.001 Google Scholar
  36. Cosson P, Sofer L, Le QH, Leger V, Schurdi-Levraud V, Whitham SA, Yamamoto ML, Gopalan S, Le Gall O, Candresse T, Carrington JC, Revers F (2010) RTM3, which controls long-distance movement of Potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol 154(1):222–232. doi:  10.1104/pp.110.155754 Google Scholar
  37. Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F (2012) The RTM resistance to Potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 7(6):e39169. doi: 10.1371/journal.pone.0039169 Google Scholar
  38. Covey SN, McCallum DG, Turner DS, Al-Kaff NS, Dale P, Cecchini E, Milner JJ (2000) Pararetrovirus–crucifer interactions: attack and defence or modus vivendi? Mol Plant Pathol 1(1):77–86. doi: 10.1046/j.1364-3703.2000.00011.x Google Scholar
  39. Csorba T, Bovi A, Dalmay T, Burgyan J (2007) The p122 subunit of tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81(21):11768–11780. doi: 10.1128/Jvi.01230-07 Google Scholar
  40. Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71. doi: 10.1016/S0065-3527(09)07502-2 Google Scholar
  41. Cui XF, Tao XR, Xie Y, Fauquet CM, Zhou XP (2004) A DNAβ associated with tomato yellow leaf curl China virus is required for symptom induction. J Virol 78(24):13966–13974. doi: 10.1128/Pvi.78.24.13966-13964.2004
  42. Cui XF, Li GX, Wang DW, Hu DW, Zhou XP (2005) A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79(16):10764–10775. doi: 10.1128/Jvi.79.16.10764-10775.2005 Google Scholar
  43. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101(5):543–553. doi: 10.1016/S0092-8674(00)80864-8 Google Scholar
  44. Daubert S, Routh G (1990) Point mutations in cauliflower mosaic virus gene VI confer host-specific symptom changes. Mol Plant Microbe Interact 3(5):341–345. doi:  10.1094/MPMI-3-341 Google Scholar
  45. Decroocq V, Sicard O, Alamillo JM, Lansac M, Eyquard JP, Garcia JA, Candresse T, Le Gall O, Revers F (2006) Multiple resistance traits control plum pox virus infection in Arabidopsis thaliana. Mol Plant Microbe Interact 19(5):541–549. doi:  10.1094/MPMI-19-0541 Google Scholar
  46. Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García JA, Candresse T (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant Microbe Interact 22(10):1302–1311. doi: 10.1094/MPMI-22-10-1302 Google Scholar
  47. Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book Am Soc Plant Biologists 9:e0156. doi: 10.1199/tab.0156 Google Scholar
  48. Diaz-Pendon JA, Truninger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5(3):223–233. doi: 10.1111/j.1364-3703.2004.00223.xGoogle Scholar
  49. Ding SW, Anderson BJ, Haase HR, Symons RH (1994) New overlapping gene encoded by the cucumber mosaic virus genome. Virology 198(2):593–601. doi: 10.1006/viro.1994.1071 Google Scholar
  50. Ding SW, Li WX, Symons RH (1995) A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J 14(23):5762–5772Google Scholar
  51. Ding XS, Liu JZ, Cheng NH, Folimonov A, Hou YM, Bao YM, Katagi C, Carter SA, Nelson RS (2004) The tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17(6):583–592. doi: 10.1094/Mpmi.2004.17.6.583 Google Scholar
  52. Du ZY, Chen AZ, Chen WH, Westwood JH, Baulcombe DC, Carr JP (2014) Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus. Plant Physiol 164(3):1378–1388. doi:  10.1104/pp.113.232090 Google Scholar
  53. Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA (2009) Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA β satellite. Mol Plant Microbe Interact 22(6):737–746. doi: 10.1094/MPMI-22-6-0737 Google Scholar
  54. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, Pruss GJ, Ecker JR, Bowman LH, Vance V (2010) Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog 6(1):e1000729. doi: 10.1371/journal.ppat.1000729 Google Scholar
  55. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371. doi:  10.1016/j.pbi.2007.04.020 Google Scholar
  56. Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148(2):405–421. doi: 10.1007/s00705-002-0957-5 Google Scholar
  57. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. doi:  10.1146/annurev.py.09.090171.001423 Google Scholar
  58. Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EPB (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80(13):6648–6656. doi: 10.1128/Jvi.00173-06 Google Scholar
  59. Fontes E (2014) Downstream events in the NIK-mediated defense associated with resistance to begomovirus. BMC Proc 8(Suppl 4):O22. doi:  10.1186/1753-6561-8-S4-O22
  60. Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18(20):2545–2556. doi: 10.1101/gad.1245904 Google Scholar
  61. Fraile A, Garcia-Arenal F (2010) The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 76:1–32. doi:  10.1016/S0065-3527(10)76001-2 Google Scholar
  62. Fraser RSS (1990) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:179–200. doi:  10.1146/annurev.py.28.090190.001143 Google Scholar
  63. Fraser RSS, Loughlin SAR (1980) Resistance to tobacco mosaic virus in tomato – effects of the Tm-1 gene on virus multiplication. J Gen Virol 48(May):87–96. doi:  10.1099/0022-1317-48-1-87 Google Scholar
  64. Fraser RSS, Loughlin SAR, Connor JC (1980) Resistance to tobacco mosaic virus in tomato – effects of the Tm-1 gene on symptom formation and multiplication of virus strain-1. J Gen Virol 50(Sep):221–224. doi:  10.1099/0022-1317-50-1-221 Google Scholar
  65. Fu ZQ, Dong XN (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. doi:  10.1146/annurev-arplant-042811-105606 Google Scholar
  66. Fu ZQ, Yan SP, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong XN (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–233. doi:  10.1038/nature11162 Google Scholar
  67. Geering ADW, Hull R (2012) Family Caulimoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London, pp 429–443Google Scholar
  68. Geri C, Cecchini E, Giannakou ME, Covey SN, Milner JJ (1999) Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Mol Plant Microbe Interact 12(5):377–384. doi:  10.1094/MPMI.1999.12.5.377 Google Scholar
  69. Geri C, Love AJ, Cecchini E, Barrett SJ, Laird J, Covey SN, Milner JJ (2004) Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. Plant Mol Biol 56(1):111–124. doi:  10.1007/s11103-004-2649-x Google Scholar
  70. Gilliland A, Murphy AM, Carr JP (2006) Induced resistance mechanisms. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, DordrechtGoogle Scholar
  71. Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:72 doi: 10.3389/fpls.2013.00072
  72. Goldberg KB, Kiernan J, Shepherd RJ (1991) A disease syndrome associated with expression of gene VI of caulimoviruses may be a nonhost reaction. Mol Plant Microbe Interact 4(2):182–189. doi:  10.1094/MPMI-4-182 Google Scholar
  73. González I, Martínez L, Rakitina DV, Lewsey MG, Atencio FA, Llave C, Kalinina NO, Carr JP, Palukaitis P, Canto T (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23(3):294–303. doi: 10.1094/MPMI-23-3-0294 Google Scholar
  74. González I, Rakitina D, Semashko M, Taliansky M, Praveen S, Palukaitis P, Carr JP, Kalinina N, Canto T (2012) RNA binding is more critical to the suppression of silencing function of cucumber mosaic virus 2b protein than nuclear localization. RNA Publ RNA Soc 18(4):771–782. doi: 10.1261/rna.031260.111 Google Scholar
  75. Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-Binding abilities. Plant Cell Physiol 48(7):1050–1060. doi: 10.1093/pcp/pcm074 Google Scholar
  76. Gottula J, Fuchs M (2009) Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv Virus Res 75:161–183. doi: 10.1016/S0065-3527(09)07505-8 Google Scholar
  77. Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324(5928):750–752. doi: 10.1126/science.1173771 Google Scholar
  78. Haas M, Bureau M, Geldreich A, Yot P, Keller M (2002) Cauliflower mosaic virus: still in the news. Mol Plant Pathol 3(6):419–429. doi:  10.1046/j.1364-3703.2002.00136.x Google Scholar
  79. Haas M, Geldreich A, Bureau M, Dupuis L, Leh W, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M (2005) The open reading frame VI product of cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17(3):927–943. doi:  10.1105/tpc.104.029017 Google Scholar
  80. Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27(15):2102–2112. doi:  10.1038/emboj.2008.129 Google Scholar
  81. Hammerschmidt R (2009) Systemic acquired resistance. Adv Bot Res 51:173–222. doi:  10.1016/S0065-2296(09)51005-1 Google Scholar
  82. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777–788. doi: 10.1038/nrmicro3117, http://www.nature.com/nrmicro/journal/v11/n11/abs/nrmicro3117.html#supplementary-information Google Scholar
  83. Hao LH, Wang H, Sunter G, Bisaro DM (2003) Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15(4):1034–1048. doi: 10.1105/tpc.009530 Google Scholar
  84. Hapiak M, Li YZ, Agama K, Swade S, Okenka G, Falk J, Khandekar S, Raikhy G, Anderson A, Pollock J, Zellner W, Schoelz J, Leisner SM (2008) cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res 138(1–2):119–129. doi:  10.1016/j.virusres.2008.09.002 Google Scholar
  85. Harries PA, Palanichelvam K, Yu WC, Schoelz JE, Nelson RS (2009) The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149(2):1005–1016. doi:  10.1104/pp.108.131755 Google Scholar
  86. Hohn T, Fütterer J (1997) The proteins and functions of plant pararetroviruses: knowns and unknowns. Crit Rev Plant Sci 16(1):133–161. doi:  10.1080/07352689709701947 Google Scholar
  87. Hull R (2014) Plant Virology, 5th edn. Academic Press, AmsterdamGoogle Scholar
  88. Hurley B, Subramaniam R, Guttman DS, Desveaux D (2014) Proteomics of effector-triggered immunity (ETI) in plants. Virulence 5(7):752–760. doi: 10.4161/viru.36329 Google Scholar
  89. Ishibashi K, Ishikawa M (2013) The resistance protein Tm-1 inhibits formation of a tomato mosaic virus replication protein-host membrane protein complex. J Virol 87(14):7933–7939. doi: 10.1128/jvi.00743-13 Google Scholar
  90. Ishibashi K, Ishikawa M (2014) Mechanisms of tomato mosaic virus RNA replication and its inhibition by the host resistance factor Tm-1. Curr Opin Virol 9:8–13, doi:http://dx.doi.org/10.1016/j.coviro.2014.08.005 Google Scholar
  91. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104(34):13833–13838. doi:  10.1073/pnas.0703203104 Google Scholar
  92. Ishibashi K, Mawatari N, Miyashita S, Kishino H, Meshi T, Ishikawa M (2012) Coevolution and hierarchical interactions of tomato mosaic virus and the resistance gene Tm-1. PLoS Pathog 8(10):e1002975. doi: 10.1371/journal.ppat.1002975 Google Scholar
  93. Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T, Ishikawa M, Matsumura H, Katoh E (2014) Structural basis for the recognition–evasion arms race between tomato mosaic virus and the resistance gene Tm-1. Proc Natl Acad Sci 111(33):E3486–E3495. doi: 10.1073/pnas.1407888111 Google Scholar
  94. Jackel JN, Buchmann RC, Singhal U, Bisaro DM (2015) Analysis of geminivirus AL2 and L2 proteins reveals a novel AL2 silencing suppressor activity. J Virol 89(6):3176–3187. doi: 10.1128/jvi.02625-14 Google Scholar
  95. Ji LH, Ding SW (2001) The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant Microbe Interact 14(6):715–724. doi:  10.1094/MPMI.2001.14.6.715 Google Scholar
  96. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. doi:  10.1038/nature05286 Google Scholar
  97. Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621. doi:  10.1146/annurev.phyto.43.011205.141140 Google Scholar
  98. Katiyar-Agarwal S, Jin HL (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48(48):225–246. doi:  10.1146/annurev-phyto-073009-114457 Google Scholar
  99. Kato M, Ishibashi K, Kobayashi C, Ishikawa M, Katoh E (2013a) Expression, purification, and functional characterization of an N-terminal fragment of the tomato mosaic virus resistance protein Tm-1. Protein Expr Purif 89(1):1–6, doi:http://dx.doi.org/10.1016/j.pep.2013.02.001 Google Scholar
  100. Kato M, Kezuka Y, Kobayashi C, Ishibashi K, Nonaka T, Ishikawa M, Katoh E (2013b) Crystallization and preliminary X-ray crystallographic analysis of the inhibitory domain of the tomato mosaic virus resistance protein Tm-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(12):1411–1414. doi: 10.1107/S1744309113030819 Google Scholar
  101. Kobayashi K, Hohn T (2004) The avirulence domain of cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. Mol Plant Microbe Interact 17(5):475–483. doi: 10.1094/MPMI.2004.17.5.475 Google Scholar
  102. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBSresistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636. doi:  10.1007/s11103-008-9293-9 Google Scholar
  103. Kong LJ, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14(8):1817–1832. doi: 10.1105/tpc.003681 Google Scholar
  104. Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Do Choi Y (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64(1–2):1–15. doi:  10.1007/s11103-006-9123-x Google Scholar
  105. Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844. doi: 10.1104/pp. 107.112029
  106. Kovač M, Müller A, Milovanovič Jarh D, Milavec M, Düchting P, Ravnikar M (2009) Multiple hormone analysis indicates involvement of jasmonate signalling in the early defence of potato to potato virus YNTN. Biol Plant 53(1):195–199. doi: 10.1007/s10535-009-0034-y Google Scholar
  107. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134, doi:http://dx.doi.org/10.1016/j.plantsci.2014.04.014 Google Scholar
  108. Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ (2013) Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 94:2777–2789. doi:  10.1099/vir.0.057729-0 Google Scholar
  109. Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52(5):1037–1049Google Scholar
  110. Lanfermeijer FC, Jiang GY, Ferwerda MA, Dijkhuis J, de Haan P, Yang RC, Hille J (2004) The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Sci 167(4):687–692. doi: 10.1016/j.plantsci.2004.04.027 Google Scholar
  111. Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 2 resistance genes from tomato differ in four amino acids. J Exp Bot 56(421):2925–2933. doi: 10.1093/jxb/eri288 Google Scholar
  112. Le Gall O, Aranda MA, Caranta C (2011) Plant resistance to viruses mediated by translation initiation factors. In: Caranta C, Aranda MA, Tepfer M, López-Moya JJ (eds) Recent advances in plant virology. Caister Academic Press, Norfolk, pp 177–194Google Scholar
  113. Lefeuvre P, Harkins GW, Lett J-M, Briddon RW, Chase MW, Moury B, Martin DP (2011) Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One 6(5):e19193. doi: 10.1371/journal.pone.0019193 Google Scholar
  114. Leke W, Mignouna D, Brown J, Kvarnheden A (2015) Begomovirus disease complex: emerging threat to vegetable production systems of West and Central Africa. Agric Food Secur 4(1):1. doi: 10.1186/s40066-014-0020-2
  115. Les Erickson F, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18(1):67–75. doi: 10.1046/j.1365-313X.1999.00426.x Google Scholar
  116. Lewsey MG, Carr JP (2009) Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants. J Gen Virol 90:3010–3014. doi:  10.1099/vir.0.014555-0 Google Scholar
  117. Lewsey M, Robertson FC, Canto T, Palukaitis P, Carr JP (2007) Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50(2):240–252. doi: 10.1111/j.1365-313X.2007.03042.x Google Scholar
  118. Lewsey M, Palukaitis P, Carr JP (2009) Plant-virus interactions: defence and counter-defence. Ann Plant Rev 34:134–176. doi:  10.1111/b.9781405175326.2009.00006.x
  119. Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood J, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, Smith AG, Ziebell H, Carr J (2010a) Disruption of the salicylate and jasmonate signaling pathways by the cucumber mosaic virus 2b RNA silencing suppressor. Phytopathology 100(6):S70Google Scholar
  120. Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010b) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 23(7):835–845. doi: 10.1094/Mpmi-23-7-0835 Google Scholar
  121. Li YZ, Leisner SM (2002) Multiple domains within the cauliflower mosaic virus gene VI product interact with the full-length protein. Mol Plant Microbe Interact 15(10):1050–1057. doi:  10.1094/MPMI.2002.15.10.1050 Google Scholar
  122. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci 109(5):1790–1795. doi: 10.1073/pnas.1118282109 Google Scholar
  123. Liu CK, Nelson RS (2013) The cell biology of tobacco mosaic virus replication and movement. Front Plant Sci 4:12. doi: 10.3389/fpls.2013.00012
  124. Liu Y, Gao QQ, Wu B, Ai TB, Guo XQ (2009) NgRDR1, an RNA-dependent RNA polymerase isolated from Nicotiana glutinosa, was involved in biotic and abiotic stresses. Plant Physiol Biochem 47(5):359–368. doi:  10.1016/j.plaphy.2008.12.017 Google Scholar
  125. Loebenstein G (2009) Local lesions and induced resistance. Adv Virus Res 75(75):73–117. doi:  10.1016/S0065-3527(09)07503-4 Google Scholar
  126. Loebenstein G, Akad F (2006) The local lesion response. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp 99–124Google Scholar
  127. Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139(2):935–948. doi:  10.1104/pp.105.066803 Google Scholar
  128. Love AJ, Laird J, Holt J, Hamilton AJ, Sadanandom A, Milner JJ (2007a) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444. doi:  10.1099/vir.0.83090-0 Google Scholar
  129. Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ (2007b) Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to cauliflower mosaic virus by restricting long-distance movement. Mol Plant Microbe Interact 20(6):659–670. doi: 10.1094/MPMI-20-6-0659Google Scholar
  130. Love AJ, Roberts K, Hooks MA, Tomos AD, Milner JJ (2008) Exploiting Arabidopsis leaf orthistichy to dissect signalling pathways during plant-pathogen interactions. Plant Signal Behav 3(9):740–742. doi: 10.4161/psb.3.9.6632 CrossRefGoogle Scholar
  131. Love AJ, Geri C, Laird J, Carr C, Yun B-W, Loake GJ, Tada Y, Sadanandom A, Milner JJ (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7(10):e47535. doi: 10.1371/journal.pone.0047535 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Lozano-Duran R, Bejarano ER (2011) Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signal Behav 6(7):999–1001. doi: 10.4161/psb.6.7.15499 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER (2011) Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23(3):1014–1032. doi: 10.1105/tpc.110.080267 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Lozano-Duran R, Caracuel Z, Bejarano ER (2012) C2 from beet curly top virus meddles with the cell cycle. Plant Signal Behav 7(12):1705–1708. doi: 10.4161/psb.22100 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Lu CA, Lin CC, Lee KW, Chen JL, Huang LF, Ho SL, Liu HJ, Hsing YI, Yu SM (2007) The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19(8):2484–2499. doi: 10.1105/tpc.105.037887 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Mahajan SK, Chisholm ST, Whitham SA, Carrington JC (1998) Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J 14(2):177–186. doi: 10.1046/j.1365-313X.1998.00105.x CrossRefPubMedGoogle Scholar
  137. Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 150:1002–1004. doi:  10.1126/science.250.4983.1002 Google Scholar
  138. Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC, Shi K, Ma S, Dinesh-Kumar SP, O’Doherty I, Schroeder FC, van Wijk KJ, Klessig DF (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci 5:777 doi:  10.3389/fpls.2014.00777
  139. Manosalva PM, Park SW, Forouhar F, Tong LA, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe Interact 23(9):1151–1163. doi:  10.1094/MPMI-23-9-1151 Google Scholar
  140. Marathe R, Anandalakshmi R, Liu Y, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3(3):167–172. doi: 10.1046/j.1364-3703.2002.00110.x Google Scholar
  141. Mariano AC, Andrade MO, Santos AA, Carolino SMB, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EPB (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318(1):24–31. doi: 10.1016/j.virol.2003.09.038 CrossRefPubMedGoogle Scholar
  142. Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8(2):223–231. doi:  10.1111/J.1364-3703.2007.00386.X Google Scholar
  143. Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33. doi: 10.1016/S0065-3527(09)07501-0 CrossRefPubMedGoogle Scholar
  144. Moriones E, Navas-Castillo J (2008) Rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after invasion of a new ecological niche. Span J Agric Res 6:147–159CrossRefGoogle Scholar
  145. Motoyoshi F, Oshima N (1977) Expression of genetically controlled resistance to tobacco mosaic virus infection in isolated tomato leaf mesophyll protoplasts. J Gen Virol 34(Mar):499–506. doi:  10.1099/0022-1317-34-3-499 Google Scholar
  146. Moury B, Charron C, Janzac B, Simon V, Gallois JL, Palloix A, Caranta C (2014) Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability. Infect Genet Evol 27:472–480. doi:  10.1016/j.meegid.2013.11.024 Google Scholar
  147. Murphy AM, Gilliland A, Wong CE, West J, Singh DP, Carr JP (2001) Signal transduction in resistance to plant viruses. Eur J Plant Pathol 107:121–128CrossRefGoogle Scholar
  148. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr Biol 18(9):650–655. doi: 10.1016/j.cub.2008.03.060 CrossRefPubMedGoogle Scholar
  149. Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance to plant virus movement. Mol Plant Microbe Interact 11:860–868. doi:  10.1094/MPMI.1998.11.9.860 Google Scholar
  150. Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660 doi:  10.3389/fpls.2014.00660
  151. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87. doi: 10.1016/j.tplants.2004.12.010 CrossRefPubMedGoogle Scholar
  152. Padmanabhan MS, Gorepoker SP, Golem S, Shiferaw H, Culver JN (2005a) Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAPI/IAA26 is associated with disease development. J Virol 79(4):2549–2558. doi: 10.1128/Jvi.4.2549-2558.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Padmanabhan MS, Shiferaw H, Culver JN (2005b) Tobamovirus interference in auxin response: a pathway to disease. Phytopathology 95(6):S135Google Scholar
  154. Padmanabhan MS, Shiferaw H, Culver JN (2006) The tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 19(8):864–873. doi: 10.1094/Mpmi-19-0864 CrossRefPubMedGoogle Scholar
  155. Padmanabhan MS, Kramer SR, Wang X, Culver JN (2008) Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 82(5):2477–2485. doi: 10.1128/Jvi.01865-07 CrossRefPubMedGoogle Scholar
  156. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18(7):402–411. doi:  10.1016/j.tplants.2013.04.004 Google Scholar
  157. Palanichelvam K, Schoelz JE (2002) A comparative analysis of the avirulence and translational transactivator functions of gene VI of cauliflower mosaic virus. Virology 293(2):225–233, doi:http://dx.doi.org/10.1006/viro.2001.1293 CrossRefPubMedGoogle Scholar
  158. Palanichelvam K, Cole AB, Shababi M, Schoelz JE (2000) Agroinfiltration of cauliflower mosaic virus gene VI elicits hypersensitive response in Nicotiana species. Mol Plant Microbe Interact 13(11):1275–1279. doi:  10.1094/MPMI.2000.13.11.1275 Google Scholar
  159. Palukaitis P, Carr JP (2008) Plant resistance responses to viruses. J Plant Pathol 90(2):153–171Google Scholar
  160. Palukaitis P, García-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323. doi: 10.1016/S0065-3527(03)62005-1 Google Scholar
  161. Palukaitis P, Roossinck MJ, Dietzgen RG, Francki RI (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348CrossRefPubMedGoogle Scholar
  162. Pandey SP, Baldwin IT (2007) RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant J 50(1):40–53. doi:  10.1111/j.1365-313X.2007.03030.x Google Scholar
  163. Pandey SP, Shahi P, Gase K, Baldwin IT (2008) Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci U S A 105(12):4559–4564. doi:  10.1073/pnas.0711363105 Google Scholar
  164. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. doi:  10.1126/science.1147113 Google Scholar
  165. Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, Tietjen K, Klessig DF (2009) Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 284(11):7307–7317. doi:  10.1074/jbc.M807968200 Google Scholar
  166. Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10(5):685–701. doi: 10.1111/J.1364-3703.2009.00559.X CrossRefPubMedGoogle Scholar
  167. Peden KW, Symons RH (1973) Cucumber mosaic virus contains a functionally divided genome. Virology 53(2):487–492. doi:  10.1016/0042-6822(73)90232-8 Google Scholar
  168. Piroux N, Saunders K, Page A, Stanley J (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKη, a component of the brassinosteroid signalling pathway. Virology 362(2):428–440. doi: 10.1016/j.virol.2006.12.034 Google Scholar
  169. Pooggin, MM (2016) Role of small RNAs in virus-host interaction. In: Kleinow T (ed) Plant-virus interactions: molecular biology, intra- and intercellular transport, pp 161–189. Springer, Basel. doi  10.1007/978-3-319-25489-0_6 Google Scholar
  170. Prasanna H, Sinha D, Verma A, Singh M, Singh B, Rai M, Martin D (2010) The population genomics of begomoviruses: global scale population structure and gene flow. Virol J 7(1):220. doi:  10.1186/1743-422X-7-220
  171. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914. doi:  10.1534/genetics.105.044891 Google Scholar
  172. Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18(8):2082–2093. doi:  10.1105/tpc.106.042747 Google Scholar
  173. Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P (2008) The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 20(3):739–751. doi: 10.1105/tpc.107.056036 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82(18):8997–9007. doi: 10.1128/jvi.00719-08 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Rakhshandehroo F, Takeshita M, Squires J, Palukaitis P (2009) The influence of RNA-dependent RNA polymerase 1 on potato virus Y infection and on other antiviral response genes. Mol Plant Microbe Interact 22(10):1312–1318. doi:  10.1094/MPMI-22-10-1312 Google Scholar
  176. Reddy DVR, Sudarshana MR, Fuchs M, Rao NC, Thottappilly G (2009) Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv Virus Res Vol 75:185–220, doi:http://dx.doi.org/10.1016/S0065-3527(09)07506-X CrossRefGoogle Scholar
  177. Revers F, Guiraud T, Houvenaghel MC, Mauduit T, Le Gall O, Candresse T (2003) Multiple resistance phenotypes to lettuce mosaic virus among Arabidopsis thaliana accessions. Mol Plant Microbe Interact 16(7):608–616. doi:  10.1094/MPMI.2003.16.7.608 Google Scholar
  178. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. doi: 10.1093/jxb/err031 CrossRefPubMedGoogle Scholar
  179. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11(1):40–45. doi:  10.1016/j.tplants.2005.11.004 Google Scholar
  180. Roberts K, Love AJ, Laval V, Laird J, Tomos AD, Hooks MA, Milner JJ (2007) Long-distance movement of cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. New Phytol 175(4):707–717. doi: 10.1111/j.1469-8137.2007.02136.xGoogle Scholar
  181. Rocha CS, Santos AA, Machado JPB, Fontes EPB (2008) The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380(2):165–169, doi:http://dx.doi.org/10.1016/j.virol.2008.08.005 CrossRefPubMedGoogle Scholar
  182. Rodriguez A, Angel CA, Lutz L, Leisner SM, Nelson RS, Schoelz JE (2014a) Association of the P6 protein of cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiol 166(3):1345–1358. doi: 10.1104/pp. 114.249250 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Rodriguez MC, Conti G, Zavallo D, Manacorda CA, Asurmendi S (2014b) TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol 14:210. doi: 10.1186/s12870-014-0210-x CrossRefPubMedPubMedCentralGoogle Scholar
  184. Rodríguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199(2):464–475. doi: 10.1111/nph.12286 CrossRefPubMedGoogle Scholar
  185. Ross AF (1961a) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14(3):329–339. doi: 10.1016/0042-6822(61)90318-X Google Scholar
  186. Ross AF (1961b) Systemic acquired resistance induced by localized virus infections in plants. Virology 14(3):340–358. doi: 10.1016/0042-6822(61)90319-1 CrossRefPubMedGoogle Scholar
  187. Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32(6):1067–1075. doi:  10.1046/j.1365-313X.2002.01499.x Google Scholar
  188. Ruffel S, Caranta C, Palloix A, Lefebvre V, Caboche M, Bendahmane A (2004) Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene 338(2):209–216. doi:  10.1016/j.gene.2004.05.010 Google Scholar
  189. Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors elF4E and elF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098. doi:  10.1099/vir.0.81817-0 Google Scholar
  190. Ryabova LA, Pooggin MM, Hohn T (2002) Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res 72:1–39. doi:  10.1016/S0079-6603(02)72066-7 Google Scholar
  191. Sacco MA, Moffett P (2009) Disease resistance genes: form and function. In: Bouarab K, Brisson N, Daayf F (eds) Molecular plant-microbe interactions. CABI North American Office, Cambridge, MA. doi:10.1079/9781845935740.0094
  192. Sakamoto T, Deguchi M, Brustolini O, Santos A, Silva F, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12(1):229. doi:  10.1186/1471-2229-12-229 Google Scholar
  193. Sanfaçon H (2015) Plant translation factors and virus resistance. Viruses 7(7):2778. doi: 10.3390/v7072778 Google Scholar
  194. Santos AA, Carvalho CM, Florentino LH, Ramos HJO, Fontes EPB (2009) Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS One 4(6):e5781. doi: 10.1371/journal.pone.0005781 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Santos AA, Lopes KVG, Apfata JAC, Fontes EPB (2010) NSP-interacting kinase, NIK: a transducer of plant defence signalling. J Exp Bot 61(14):3839–3845. doi: 10.1093/jxb/erq219 CrossRefPubMedGoogle Scholar
  196. Schoelz JE, Shepherd RJ (1988) Host range control of Cauliflower mosaic virus. Virology 162(1):30–37. doi: 10.1016/0042-6822(88)90391-1Google Scholar
  197. Seal SE, vandenBosch F, Jeger MJ (2006) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25(1):23–46. doi: 10.1080/07352680500365257 CrossRefGoogle Scholar
  198. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17(1):311–325. doi: 10.1105/tpc.104.027235 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. doi: 10.3389/fpls.2013.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA (2014) Signaling by small metabolites in systemic acquired resistance. Plant J 79(4):645–658. doi: 10.1111/tpj.12464 CrossRefPubMedGoogle Scholar
  201. Shen W, Hanley-Bowdoin L (2006) Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol 142(4):1642–1655. doi: 10.1104/pp. 106.088476 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Shen QH, Zhou FS, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mladisease resistance genes to the powdery mildew fungus. Plant Cell 15(3):732–744. doi: 10.1105/tpc.009258Google Scholar
  203. Shen W, Reyes MI, Hanley-Bowdoin L (2009) Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol 150(2):996–1005. doi: 10.1104/pp. 108.132787 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Shen QT, Liu Z, Song FM, Xie Q, Hanley-Bowdoin L, Zhou XP (2011) Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a Geminivirus β-satellite. Plant Physiol 157(3):1394–1406. doi: 10.1104/pp. 111.184648 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Shen Q, Bao M, Zhou X (2012) A plant kinase plays roles in defense response against geminivirus by phosphorylation of a viral pathogenesis protein. Plant Signal Behav 7(7):888–892. doi: 10.4161/psb.20646 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Shen W, Dallas MB, Goshe MB, Hanley-Bowdoin L (2014) SnRK1 phosphorylation of AL2 delays cabbage leaf curl virus infection in Arabidopsis. J Virol 88(18):10598–10612. doi: 10.1128/Jvi.00761-14 Google Scholar
  207. Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36(18):5896–5909. doi:  10.1093/nar/gkn590 Google Scholar
  208. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24(3):859–874. doi: 10.1105/tpc.111.095380 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721. doi:10.1038/385718a0Google Scholar
  210. Soards AJ, Murphy AM, Palukaitis P, Carr JP (2002) Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant Microbe Interact 15(7):647–653. doi:  10.1094/MPMI.2002.15.7.647 Google Scholar
  211. Soitamo AJ, Jada B, Lehto K (2011) HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC Plant Biol 11:68. doi: 10.1186/1471-2229-11-68 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Soitamo A, Jada B, Lehto K (2012) Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol 12(1):204 doi: 10.1186/1471-2229-12-204 Google Scholar
  213. Song SS, Qi TC, Wasternack C, Xie DX (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21:112–119. doi:  10.1016/j.pbi.2014.07.005 Google Scholar
  214. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100. doi:  10.1038/nri3141 Google Scholar
  215. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770. doi:  10.1105/%20tpc.%20009159
  216. Stout MJ, Thaler JS, Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689. doi:  10.1146/annurev.ento.51.110104.151117 Google Scholar
  217. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223. doi: 10.1146/annurev.arplant.55.031903.141753 CrossRefPubMedGoogle Scholar
  218. Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4(10):1321–1331. doi: 10.2307/3869417 Google Scholar
  219. Sunter G, Bisaro DM (2003) Identification of a minimal sequence required for activation of the tomato golden mosaic virus coat protein promoter in protoplasts. Virology 305(2):452–462. doi: 10.1006/viro.2002.1757 Google Scholar
  220. Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285(1):59–70. doi: 10.1006/viro.2001.0950 CrossRefPubMedGoogle Scholar
  221. Thaler JS, Fidantsef AL, Bostock RM (2002a) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28(6):1131–1159. doi: 10.1023/A:1016225515936 CrossRefPubMedGoogle Scholar
  222. Thaler JS, Karban R, Ullman DE, Boege K, Bostock RM (2002b) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235CrossRefPubMedGoogle Scholar
  223. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270. doi:  10.1016/j.tplants.2012.02.010 Google Scholar
  224. Thompson JR, Tepfer M (2010) Assessment of the benefits and risks for engineered virus resistance. Adv Virus Res 76:33–56. doi:  10.1016/S0065-3527(10)76002-4 Google Scholar
  225. Tiwari N, Sharma PK, Malathi VG (2013) Functional characterization of βC1 gene of cotton leaf curl Multan betasatellite. Virus Genes 46(1):111–119. doi: 10.1007/s11262-012-0828-4 CrossRefPubMedGoogle Scholar
  226. Truniger V, Aranda MA (2009) Recessive resistance to plant viruses. Adv Virus Res 75:119–159. doi:  10.1016/S0065-3527(09)07504-6 Google Scholar
  227. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25(2):744–761. doi: 10.1105/tpc.112.108548 CrossRefPubMedPubMedCentralGoogle Scholar
  228. van der Hoorn RA, Kamoun S (2008) From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017. doi: 10.1105/tpc.108.060194 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Várallyay É, Havelda Z (2013) Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol Plant Pathol 14(6):567–575. doi: 10.1111/mpp.12029 CrossRefPubMedGoogle Scholar
  230. Vernooij B, Friedrich L, Morse A, Reist R, Kolditzjawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6(7):959–965. doi:  10.2307/3870006 Google Scholar
  231. Vlot AC, Klessig DF, Park SW (2008a) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11(4):436–442. doi:  10.1016/j.pbi.2008.05.003 Google Scholar
  232. Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou FS, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008b) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56(3):445–456. doi:  10.1111/j.1365-313X.2008.03618.x Google Scholar
  233. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. doi:  10.1146/annurev.phyto.050908.135202 Google Scholar
  234. Vogler H, Kwon M-O, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M (2008) Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 4(4):e1000038. doi: 10.1371/journal.ppat.1000038 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Wang H, Hao L, Shung C-Y, Sunter G, Bisaro DM (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032. doi:  10.1105/tpc.015180 Google Scholar
  236. Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79(12):7410–7418. doi:  10.1128/JVI.79.12.7410-7418.2005 Google Scholar
  237. Wang D, Amornsiripanitch N, Dong XN (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11):1042–1050. doi:  10.1371/journal.ppat.0020123 Google Scholar
  238. Wang X, Goregaoker SP, Culver JN (2009) Interaction of the tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol 83(19):9720–9730. doi: 10.1128/Jvi.00941-09 CrossRefPubMedPubMedCentralGoogle Scholar
  239. Wang L-Y, Lin S-S, Hung T-H, Li T-K, Lin N-C, Shen T-L (2012) Multiple domains of the tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol Plant Microbe Interact 25(5):648–657. doi: 10.1094/MPMI-06-11-0155 CrossRefPubMedGoogle Scholar
  240. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094. doi:  10.1105/tpc.3.10.1085 Google Scholar
  241. Watanabe Y, Kishibayashi N, Motoyoshi F, Okada Y (1987) Characterization of Tm-1 gene action on replication of common isolates and a resistance-breaking isolate of TMV. Virology 161(2):527–532, doi:http://dx.doi.org/10.1016/0042-6822(87)90147-4 CrossRefPubMedGoogle Scholar
  242. Westwood JH, Groen SC, Du ZY, Murphy AM, Anggoro DT, Tungadi T, Luang-In V, Lewsey MG, Rossiter JT, Powell G, Smith AG, Carr JP (2013a) A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS One 8(12):e83066. doi:ARTN e83066. doi: 10.1371/journal.pone.0083066
  243. Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AAR, Carr JP (2013b) A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol Plant Pathol 14(2):158–170. doi:  10.1111/j.1364-3703.2012.00840.x Google Scholar
  244. Westwood JH, Lewsey MG, Murphy AM, Tungadi T, Bates A, Gilligan CA, Carr JP (2014) Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions. J Gen Virol 95(Pt 3):733–739. doi: 10.1099/vir.0.060624-0 CrossRefPubMedPubMedCentralGoogle Scholar
  245. White RF (1979) Acetylsalicylic-acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99(2):410–412. doi:  10.1016/0042-6822(79)90019-9 Google Scholar
  246. White RF, Antoniw JF, Carr JP, Woods RD (1983) The effects of aspirin and polyacrylic acid on the multiplication and spread of TMV in different cultivars of tobacco with and without the N-gene. Phytopathol Z 107(3):224–232. doi: 10.1111/j.1439-0434.1983.tb00541.x CrossRefGoogle Scholar
  247. Whitham S, Dineshkumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N - Similarity to Toll and the interleukin-1 receptor. Cell 78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6 CrossRefPubMedGoogle Scholar
  248. Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock–like protein. Plant Cell Online 12(4):569–582. doi: 10.1105/tpc.12.4.569 CrossRefGoogle Scholar
  249. Wintermantel WM, Anderson EJ, Schoelz JE (1993) Identification of domains within gene VI of cauliflower mosaic virus that influence systemic infection of Nicotiana bigelovii in a light-dependent manner. Virology 196(2):789–798. doi:  10.1016/S0042-6822(83)90001-6 Google Scholar
  250. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1(6):639–647. doi:  10.1016/j.celrep.2012.05.008 Google Scholar
  251. Xie Q, Sanz-Burgos AP, Guo HS, Garcia JA, Gutierrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39(4):647–656. doi: 10.1023/A:1006138221874 CrossRefPubMedGoogle Scholar
  252. Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci U S A 98(11):6516–6521. doi:  10.1073/pnas.111440998 Google Scholar
  253. Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68, doi:http://dx.doi.org/10.1016/j.pbi.2014.04.006 CrossRefPubMedGoogle Scholar
  254. Yang SJ, Carter SA, Cole AB, Cheng NH, Nelson RS (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci U S A 101(16):6297–6302. doi:  10.1073/pnas.0304346101 Google Scholar
  255. Yang X, Baliji S, Buchmann RC, Wang H, Lindbo JA, Sunter G, Bisaro DM (2007) Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction. J Virol 81(21):11972–11981. doi: 10.1128/Jvi.00617-07 CrossRefPubMedPubMedCentralGoogle Scholar
  256. Yang JY, Iwasaki M, Machida C, Machida Y, Zhou XP, Chua NH (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22(18):2564–2577.doi:  10.1101/gad.1682208 Google Scholar
  257. Yang XL, Xie Y, Raja P, Li SZ, Wolf JN, Shen QT, Bisaro DM, Zhou XP (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7(10):e1002329. doi: 10.1371/journal.ppat.1002329 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Yu D, Fan B, MacFarlane SA (2003a) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant Microbe Interact 16:206–216. doi:  10.1094/MPMI.2003.16.3.206 Google Scholar
  259. Yu WC, Murfett J, Schoelz JE (2003b) Differential induction of symptoms in Arabidopsis by P6 of cauliflower mosaic virus. Mol Plant Microbe Interact 16(1):35–42. doi:  10.1094/MPMI.2003.16.1.35 Google Scholar
  260. Zhai JX, Jeong DH, De Paoli E, Park S, Rosen BD, Li YP, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25(23):2540–2553. doi:  10.1101/gad.177527.111 Google Scholar
  261. Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20(23):3255–3268. doi: 10.1101/gad.1495506 Google Scholar
  262. Zhang ZH, Chen H, Huang XH, Xia R, Zhao QZ, Lai JB, Teng KL, Li Y, Liang LM, Du QS, Zhou XP, Guo HS, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23(1):273–288. doi: 10.1105/tpc.110.081695 CrossRefPubMedPubMedCentralGoogle Scholar
  263. Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21(5):1294–1304. doi: 10.1111/j.1365-294X.2012.05457.x CrossRefPubMedGoogle Scholar
  264. Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51(1):357–381. doi: 10.1146/annurev-phyto-082712-102234 CrossRefPubMedGoogle Scholar
  265. Zhou T, Murphy AM, Lewsey MG, Westwood JH, Zhang H-M, González I, Canto T, Carr JP (2014) Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection. J Gen Virol 95(Pt 6):1408–1413. doi: 10.1099/vir.0.063461-0 CrossRefPubMedPubMedCentralGoogle Scholar
  266. Zhu SF, Gao F, Cao XS, Chen M, Ye GY, Wei CH, Li Y (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139(4):1935–1945. doi: 10.1104/pp. 105.072306 CrossRefPubMedPubMedCentralGoogle Scholar
  267. Zhu F, Xi D-H, Yuan S, Xu F, Zhang D-W, Lin H-H (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 27(6):567–577. doi: 10.1094/MPMI-11-13-0349-R CrossRefPubMedGoogle Scholar
  268. Ziebell H, Murphy AM, Groen SC, Tungadi T, Westwood JH, Lewsey MG, Moulin M, Kleczkowski A, Smith AG, Stevens M, Powell G, Carr JP (2011) Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci Rep Uk 1:187. doi:  10.1038/srep00187
  269. Zijlstra C, ScharerHernandez N, Gal S, Hohn T (1996) Arabidopsis thaliana expressing the cauliflower mosaic virus ORF VI transgene has a late flowering phenotype. Virus Genes 13(1):5–17. doi: 10.1007/BF00576974Google Scholar
  270. Zipfel C, Rathjen JP (2008) Plant immunity: AvrPto targets the frontline. Curr Biol 18(5):R218–R220. doi:  10.1016/j.cub.2008.01.016 Google Scholar
  271. Zorzatto C, Machado JPB, Lopes KVG, Nascimento KJT, Pereira WA, Brustolini OJB, Reis PAB, Calil IP, Deguchi M, Sachetto-Martins G, Gouveia BC, Loriato VAP, Silva MAC, Silva FF, Santos AA, Chory J, Fontes EPB (2015) NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520(7549):679–682. doi: 10.1038/nature14171, http://www.nature.com/nature/journal/v520/n7549/abs/nature14171.html#supplementary-information Google Scholar
  272. Zvereva A, Pooggin M (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4(11):2578–2597. doi: 10.3390/v4112578 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Epidemiologie und PathogendiagnostikJulius Kühn-InstitutBraunschweigGermany

Personalised recommendations