Advertisement

Regulation of Plasmodesmal Transport and Modification of Plasmodesmata During Development and Following Infection by Viruses and Viral Proteins

  • Tessa M. Burch-Smith
  • Patricia C. ZambryskiEmail author
Chapter

Abstract

Plant cells are encased in cellulose precluding direct contact. To enable intercellular communication, plants evolved cell wall-spanning channels called plasmodesmata. Plasmodesmata are essential to facilitate transport of small molecules such as photosynthate, as well as critical signaling macromolecules such as transcription factors and RNAs. Plasmodesmata are indispensible for all stages of plant development, from embryogenesis, through vegetative and reproductive development. Plasmodesmata are not passive channels, but instead they are highly dynamic and change their apertures in response to intracellular signals such as reactive oxygen species, hormones, and chloroplast and mitochondrial homeostasis. To date the best-known mechanism for controlling the degree of plasmodesmata transport is the reversible deposition of callose polysaccharides in the cell wall immediately surrounding plasmodesmata channels. Plant viruses have evolved to counteract innate plasmodesmata regulatory mechanisms and are well-known pirates of plasmodesmata during infectious spread.

Keywords

Tobacco Mosaic Virus Shoot Apical Meristem Movement Protein Callose Deposition Triple Gene Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Krzysztof Bobik, Jacob Brunkard, and John Zupan for superb help with the illustrations. TBS thanks the University of Tennessee at Knoxville for start-up funds.

References

  1. Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M, Mely Y, Maule AJ, Ritzenthaler C (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6(9), e1001119PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arisz WH (1969) Intercellular polar transport and the role of the plasmodesmata in coleoptiles and Vallisneria leaves. Acta Bot Neerl 10:14–38CrossRefGoogle Scholar
  3. Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4(3):377–394PubMedCrossRefGoogle Scholar
  4. Balasubramanian V, Vashisht D, Cletus J, Sakthivel N (2012) Plant beta-1,3-glucanases: Their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34(11):1983–1990PubMedCrossRefGoogle Scholar
  5. Baluska F, Cvrckova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126(1):39–46PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baluska F, Samaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55(396):463–473PubMedCrossRefGoogle Scholar
  7. Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP, Wilson MH, Yu L, Li W, Hijazi HI, Oh J, Pearce SP, Perez-Amador MA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman TC, Pridmore TP, Swarup R, King JR, Bennett MJ (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell. doi: 10.1105/tpc.113.119495 PubMedPubMedCentralGoogle Scholar
  8. Barratt DH, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155(1):328–341PubMedCrossRefGoogle Scholar
  9. Barton DA, Cole L, Collings DA, Liu DY, Smith PM, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66(5):806–817PubMedCrossRefGoogle Scholar
  10. Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6(1):301–311PubMedCrossRefGoogle Scholar
  11. Bayer E, Thomas C, Maule A (2008) Symplastic domains in the Arabidopsis shoot apical meristem correlate with PDLP1 expression patterns. Plant Signal Behav 3(10):853–855PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beachy RN, Heinlein M (2000) Role of P30 in replication and spread of TMV. Traffic 1(7):540–544PubMedCrossRefGoogle Scholar
  13. Beffa RS, Hofer RM, Thomas M, Meins F Jr (1996) Decreased susceptibility to viral disease of [beta]-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8(6):1001–1011PubMedPubMedCentralGoogle Scholar
  14. Beleyur T, Abdul Kareem VK, Shaji A, Prasad K (2013) A mathematical basis for plant patterning derived from physico-chemical phenomena. Bioessays 35(4):366–376PubMedCrossRefGoogle Scholar
  15. Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106(9):3615–3620PubMedPubMedCentralCrossRefGoogle Scholar
  16. Benitez-Alfonso Y, Jackson D, Maule A (2011) Redox regulation of intercellular transport. Protoplasma 248(1):131–140PubMedCrossRefGoogle Scholar
  17. Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26(2):136–147PubMedCrossRefGoogle Scholar
  18. Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS (2013) Influence of host chloroplast proteins on tobacco mosaic virus accumulation and intercellular movement. Plant Physiol 161(1):134–147PubMedCrossRefGoogle Scholar
  19. Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14(6):733–741CrossRefGoogle Scholar
  20. Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132(2):568–577PubMedPubMedCentralCrossRefGoogle Scholar
  21. Botha CEJ, Cross RHM, van Bel AJE, Peter CI (2000) Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma 214(1–2):65–72CrossRefGoogle Scholar
  22. Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, Fleck C, Hulskamp M (2008) Two-dimensional patterning by a trapping/depletion mechanism: The role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6(6), e141PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brizard JP, Carapito C, Delalande F, Van Dorsselaer A, Brugidou C (2006) Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Mol Cell Proteomics 5(12):2279–2297PubMedCrossRefGoogle Scholar
  24. Brunkard JO, Runkel AM, Zambryski P (2013) Plasmodesmata dynamics are coordinated by intracellular signaling pathways. Curr Opin Plant Biol 16:614–620PubMedCrossRefGoogle Scholar
  25. Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class I beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28(3):361–369PubMedCrossRefGoogle Scholar
  26. Burch-Smith TM, Zambryski PC (2010) Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20(11):989–993PubMedPubMedCentralCrossRefGoogle Scholar
  27. Burch-Smith TM, Zambryski PC (2012) Plasmodesmata paradigm shift: Regulation from without versus within. Annu Rev Plant Biol 63:239–260PubMedCrossRefGoogle Scholar
  28. Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC (2011a) Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc Natl Acad Sci U S A 108(51):E1451–E1460PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011b) Plasmodesmata during development: Re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248(1):61–74PubMedCrossRefGoogle Scholar
  30. Burch-Smith TM, Cui Y, Zambryski PC (2012) Reduced levels of class 1 reversibly glycosylated polypeptide increase intercellular transport via plasmodesmata. Plant Signal Behav 7(1):62–67PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signaling by microRNA165/6 directs gene-dose dependent root cell fate. Nature 465:316–321PubMedPubMedCentralCrossRefGoogle Scholar
  32. Carr DJ (1976) Historical perspectives on plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: Studies on plasmodesmata. Springer, Berlin/Heidelberg, pp 291–295CrossRefGoogle Scholar
  33. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896PubMedCrossRefGoogle Scholar
  34. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335(6065):207–211PubMedCrossRefGoogle Scholar
  35. Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23(5):549–554PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85PubMedCrossRefGoogle Scholar
  37. Conti G, Rodriguez MC, Manacorda CA, Asurmendi S (2012) Transgenic expression of tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum. Mol Plant Microbe Interact 25(10):1370–1384Google Scholar
  38. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033PubMedCrossRefGoogle Scholar
  39. Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberte JF (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83(20):10460–10471PubMedPubMedCentralCrossRefGoogle Scholar
  40. Deeks MJ, Calcutt JR, Ingle EK, Hawkins TJ, Chapman S, Richardson AC, Mentlak DA, Dixon MR, Cartwright F, Smertenko AP, Oparka K, Hussey PJ (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22(17):1595–1600PubMedCrossRefGoogle Scholar
  41. Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169(1–2):28–41CrossRefGoogle Scholar
  42. Doxey AC, Yaish MW, Moffatt BA, Griffith M, McConkey BJ (2007) Functional divergence in the Arabidopsis beta-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol 24(4):1045–1055PubMedCrossRefGoogle Scholar
  43. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328(5980):912–916PubMedCrossRefGoogle Scholar
  44. Ehlers K, Grobe Westerloh M (2013) Developmental control of plasmodesmata frequency, structure and function. In: Sokolowska K, Sowinski P (eds) Symplasmic transport in vascular plants. Springer Science + Business Media, New York, pp 41–82CrossRefGoogle Scholar
  45. Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: Structure, origin, and functioning. Protoplasma 216(1–2):1–30PubMedCrossRefGoogle Scholar
  46. Ehlers K, van Bel AJ (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231(2):371–385PubMedCrossRefGoogle Scholar
  47. Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2(12):1261–1270PubMedCrossRefGoogle Scholar
  48. Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20(9):1074–1081PubMedCrossRefGoogle Scholar
  49. Epel B, van Lent JWM, Cohen L, Kotlizky G, Katz A, Yahalom A (1996) A 41 kDa protein isolated from maize mesocotyl cell walls immunolocalizes to plasmodesmata. Protoplasma 191:70–78CrossRefGoogle Scholar
  50. Faulkner C (2013) Receptor-mediated signaling at plasmodesmata. Front Plant Sci 4:521PubMedPubMedCentralCrossRefGoogle Scholar
  51. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: A multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20(6):1504–1518PubMedPubMedCentralCrossRefGoogle Scholar
  52. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110(22):9166–9170PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A (2011) Arabidopsis plasmodesmal proteome. PLoS One 6(4), e18880PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fisher DB (2000) Long-distance transport. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPB, Rockville, pp 730–785Google Scholar
  55. Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25(1):57–70PubMedPubMedCentralCrossRefGoogle Scholar
  56. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  57. Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. Mol Plant Microbe Interact 16(2):132–140PubMedCrossRefGoogle Scholar
  58. Gamalei Y (1989) Structure and function of leaf minor veins in trees and herbs. Trees 3(2):96–110CrossRefGoogle Scholar
  59. Gisel A, Barella S, Hempel FD, Zambryski PC (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126(9):1879–1889PubMedGoogle Scholar
  60. Gisel A, Hempel FD, Barella S, Zambryski P (2002) Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci U S A 99(3):1713–1717PubMedPubMedCentralCrossRefGoogle Scholar
  61. Grabski S, De Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5(1):25–38PubMedPubMedCentralCrossRefGoogle Scholar
  62. Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberte JF (2012) Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 86(17):9255–9265PubMedPubMedCentralCrossRefGoogle Scholar
  63. Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberte JF (2013) 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbio 4:351CrossRefGoogle Scholar
  64. Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21(3):335–345PubMedCrossRefGoogle Scholar
  65. Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132(3):1149–1152PubMedPubMedCentralCrossRefGoogle Scholar
  66. Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137(10):1731–1741PubMedCrossRefGoogle Scholar
  67. Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, Kang BH, Lucas WJ, Kim JY (2014a) Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 28(2):132–146PubMedCrossRefGoogle Scholar
  68. Han X, Kumar D, Chen H, Wu S, Kim JY (2014b) Transcription factor-mediated cell-to-cell signalling in plants. J Exp Bot 65(7):1737–1749PubMedCrossRefGoogle Scholar
  69. Hanson MR, Sattarzadeh A (2011) Stromules: Recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155(4):1486–1492PubMedPubMedCentralCrossRefGoogle Scholar
  70. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567PubMedCrossRefGoogle Scholar
  71. Hofmann J, Youssef-Banora M, de Almeida-Engler J, Grundler FM (2010) The role of callose deposition along plasmodesmata in nematode feeding sites. Mol Plant Microbe Interact 23(5):549–557PubMedCrossRefGoogle Scholar
  72. Iglesias VA, Meins F Jr (2000) Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21(2):157–166PubMedCrossRefGoogle Scholar
  73. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413Google Scholar
  74. Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17(12):1050–1054PubMedCrossRefGoogle Scholar
  75. Jarsch IK, Ott T (2011) Perspectives on remorin proteins, membrane rafts, and their role during plant-microbe interactions. Mol Plant Microbe Interact 24(1):7–12PubMedCrossRefGoogle Scholar
  76. Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17(3):957–970PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kawade K, Horiguchi G, Tsukaya H (2010) Non-cell-autonomously coordinated organ size regulation in leaf development. Development 137(24):4221–4227PubMedCrossRefGoogle Scholar
  78. Kawade K, Horiguchi G, Usami T, Hirai MY, Tsukaya H (2013) ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves. Curr Biol 23(9):788–792PubMedCrossRefGoogle Scholar
  79. Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101(16):6291–6296PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130(18):4351–4362PubMedCrossRefGoogle Scholar
  81. Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 102(6):2227–2231PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kim I, Kobayashi K, Cho E, Zambryski PC (2005b) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A 102(33):11945–11950PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P (2007) INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19(6):1885–1897PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kohler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113(Pt 1):81–89PubMedGoogle Scholar
  85. Kotlizky G, Shurtz S, Yahalom A, Malik Z, Traub O, Epel BL (1992) An improved procedure for the isolation of plasmodesmata embedded in clean maize cell walls. Plant J 2(4):623–630CrossRefGoogle Scholar
  86. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97(6):2940–2945PubMedPubMedCentralCrossRefGoogle Scholar
  87. Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401(1):6–17PubMedCrossRefGoogle Scholar
  88. Krenz B, Jeske H, Kleinow T (2012) The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Front Plant Sci 3:291PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132(24):5387–5398PubMedCrossRefGoogle Scholar
  90. Kwiatkowska M (1991) Autoradiographic studies on the role of plasmodesmata in the transport of gibberellin. Planta 183(2):294–299PubMedCrossRefGoogle Scholar
  91. Lee J-Y, Lucas WJ (2001) Phosphorylation of viral movement proteins--regulation of cell-to-cell trafficking. Trends Microbiol 9(1):5–8PubMedCrossRefGoogle Scholar
  92. Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V (2011) A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23(9):3353–3373PubMedPubMedCentralCrossRefGoogle Scholar
  93. Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49(4):669–682PubMedCrossRefGoogle Scholar
  94. Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107(6):2491–2496PubMedPubMedCentralCrossRefGoogle Scholar
  95. Liang D, White RG, Waterhouse PM (2012) Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol 159(3):984–1000PubMedPubMedCentralCrossRefGoogle Scholar
  96. Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217(4):658–667PubMedCrossRefGoogle Scholar
  97. Lucas WJ (2006) Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 344(1):169–184PubMedCrossRefGoogle Scholar
  98. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270(5244):1980–1983PubMedCrossRefGoogle Scholar
  99. Lucas WJ, Balachandran S, Park J, Wolf S (1996) Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J Exp Bot 47 Spec No:1119–1128Google Scholar
  100. Martens HJ, Roberts AG, Oparka KJ, Schulz A (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142(2):471–480PubMedPubMedCentralCrossRefGoogle Scholar
  101. Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 107(8):3900–3905PubMedPubMedCentralCrossRefGoogle Scholar
  102. Meng Y, Shao C, Wang H, Chen M (2011) The regulatory activities of plant microRNAs: A more dynamic perspective. Plant Physiol 157(4):1583–1595PubMedPubMedCentralCrossRefGoogle Scholar
  103. Munch E (1930) Material flow in plants (trans: Milburn JA, Kreeb KH). Gustav Fischer Verlag, University of Bremen, JenaGoogle Scholar
  104. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853):307–311PubMedCrossRefGoogle Scholar
  105. Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248:75–99PubMedCrossRefGoogle Scholar
  106. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97(6):743–754PubMedCrossRefGoogle Scholar
  107. Ormenese S, Havelange A, Deltour R, Bernier G (2000) The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral transition. Planta 211(3):370–375PubMedCrossRefGoogle Scholar
  108. Ormenese S, Bernier G, Perilleux C (2006) Cytokinin application to the shoot apical meristem of Sinapis alba enhances secondary plasmodesmata formation. Planta 224(6):1481–1484PubMedCrossRefGoogle Scholar
  109. Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1(9):307–311CrossRefGoogle Scholar
  110. Patrick JW (2013) Does Don Fisher’s high-pressure manifold model account for phloem transport and resource partitioning? Front Plant Sci 4:184PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17(11):2899–2910PubMedPubMedCentralCrossRefGoogle Scholar
  112. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18(19):2368–2379PubMedPubMedCentralCrossRefGoogle Scholar
  113. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122(11):3433–3441PubMedGoogle Scholar
  114. Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285(37):28902–28911PubMedPubMedCentralCrossRefGoogle Scholar
  115. Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci U S A 99(19):12495–12500PubMedPubMedCentralCrossRefGoogle Scholar
  116. Provencher LM, Miao L, Sinha N, Lucas WJ (2001) Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13(5):1127–1141PubMedPubMedCentralCrossRefGoogle Scholar
  117. Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21(5):1541–1555Google Scholar
  118. Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106(33):14162–14167PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427(6977):858–861PubMedCrossRefGoogle Scholar
  120. Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26(3):249–264PubMedCrossRefGoogle Scholar
  121. Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23(1):130–146PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: Its role in plant growth and development. J Exp Bot 62(10):3321–3338PubMedCrossRefGoogle Scholar
  123. Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5(5):325–332PubMedCrossRefGoogle Scholar
  124. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansion. Plant Cell 13(1):47–60PubMedPubMedCentralGoogle Scholar
  125. Ruan YL, Xu SM, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136(4):4104–4113PubMedPubMedCentralCrossRefGoogle Scholar
  126. Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell 8(4):645–658PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rutschow HL, Baskin TI, Kramer EM (2011) Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol 155(4):1817–1826PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell 17(6):1788–1800PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sandhu AP, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2(5):840–850PubMedCrossRefGoogle Scholar
  130. Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20(12):3374–3388PubMedPubMedCentralCrossRefGoogle Scholar
  131. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464(7290):913–916PubMedCrossRefGoogle Scholar
  132. Schubert M, Koteyeva NK, Wabnitz PW, Santos P, Buttner M, Sauer N, Demchenko K, Pawlowski K (2011) Plasmodesmata distribution and sugar partitioning in nitrogen-fixing root nodules of Datisca glomerata. Planta 233(1):139–152PubMedCrossRefGoogle Scholar
  133. Sessions A, Yanofsky MF, Weigel D (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289(5480):779–782PubMedCrossRefGoogle Scholar
  134. Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S (2011) An update on plant membrane rafts. Curr Opin Plant Biol 14(6):642–649PubMedCrossRefGoogle Scholar
  135. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21(2):581–594PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sobczak MaG W (2008) Structure of cyst nematode feeding sites. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism, vol 15, 1st edn, Plant cell monographs. Springer, Heidelberg, pp 153–187Google Scholar
  137. Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139(2):701–712PubMedPubMedCentralCrossRefGoogle Scholar
  138. Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106(40):17229–17234PubMedPubMedCentralCrossRefGoogle Scholar
  139. Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol 158(1):190–199PubMedPubMedCentralCrossRefGoogle Scholar
  140. Szittya G, Burgyan J (2013) RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol 371:153–181PubMedGoogle Scholar
  141. Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6(1), e7PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112(4):739–747PubMedCrossRefGoogle Scholar
  143. Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248(1):39–60PubMedCrossRefGoogle Scholar
  144. Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ (2013) Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 201(7):981–995PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143(4):606–616PubMedCrossRefGoogle Scholar
  146. Turgeon R, Medville R (2004) Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiol 136(3):3795–3803PubMedPubMedCentralCrossRefGoogle Scholar
  147. Ueki S, Spektor R, Natale DM, Citovsky V (2010) ANK, a host cytoplasmic receptor for the tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. PLoS Pathog 6(11), e1001201PubMedPubMedCentralCrossRefGoogle Scholar
  148. Urbanus SL, Martinelli AP, Peter Dinh QD, Aizza LC, Dornelas MC, Angenent GC, Immink RG (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72PubMedGoogle Scholar
  149. van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378(6552):62–65PubMedCrossRefGoogle Scholar
  150. van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390(6657):287–289PubMedCrossRefGoogle Scholar
  151. Vaten A, Dettmer J, Wu S, Stierhof YD, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R, Lehesranta S, Mahonen AP, Kim JY, Jokitalo E, Sauer N, Scheres B, Nakajima K, Carlsbecker A, Gallagher KL, Helariutta Y (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21(6):1144–1155PubMedCrossRefGoogle Scholar
  152. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev 20(7):759–771PubMedCrossRefGoogle Scholar
  153. Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D (2010) Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23(10):1231–1247PubMedCrossRefGoogle Scholar
  154. Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47(6):693–701PubMedCrossRefGoogle Scholar
  155. Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23(3):195–250CrossRefGoogle Scholar
  156. Wang X, Sager R, Cui W, Zhang C, Lu H, Lee JY (2013) Salicylic acid regulates Plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25(6):2315–2329PubMedPubMedCentralCrossRefGoogle Scholar
  157. White RG, Barton DA (2011) The cytoskeleton in plasmodesmata: A role in intercellular transport? J Exp Bot 62(15):5249–5266PubMedCrossRefGoogle Scholar
  158. White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180(3–4):169–184CrossRefGoogle Scholar
  159. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414(6863):562–565PubMedCrossRefGoogle Scholar
  160. Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65(1):1–14PubMedCrossRefGoogle Scholar
  161. Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25(19):2025–2030PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zavaliev R, Sagi G, Gera A, Epel BL (2010) The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J Exp Bot 61(1):131–142PubMedCrossRefGoogle Scholar
  163. Zavaliev R, Ueki S, Citovsky V, Epel BL (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248(1):117–130PubMedCrossRefGoogle Scholar
  164. Zavaliev R, Levy A, Gera A, Epel BL (2013) Subcellular dynamics and role of Arabidopsis beta-1,3-glucanases in cell-to-cell movement of tobamoviruses. Mol Plant Microbe Interact 26(9):1016–1030PubMedCrossRefGoogle Scholar
  165. Zhao J, Liu Q, Zhang H, Jia Q, Hong Y, Liu Y (2013) The rubisco small subunit is involved in tobamovirus movement and Tm-2(2)-mediated extreme resistance. Plant Physiol 161(1):374–383PubMedCrossRefGoogle Scholar
  166. Zhou J, Wang X, Lee JY, Lee JY (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. Plant Cell 25(1):187–201PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biochemistry, Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations