Advertisement

Virus-Induced Modification of Subnuclear Domain Functions

  • Andrew J. Love
  • Jane Shaw
  • Michael E. TalianskyEmail author
Chapter

Abstract

The nucleus and subnuclear structures such as Cajal bodies and the nucleolus function as pleiotropic control centres which regulate cellular activities. In recent years it has been found that proteins encoded by diverse genera of plant viruses can localize and interact with components of these structures during the infection process. In some cases such interactions are required for successful replication and systemic spread of the viruses, whereas in other cases these associations are detrimental to virus infection. This chapter aims to discuss the types of interaction at the mechanistic level, to provide the reader with a broad understanding of the role of subnuclear domains during plant virus infections.

Keywords

Coat Protein Tomato Yellow Leaf Curl Virus Alfalfa Mosaic Virus Barley Stripe Mosaic Virus Nucleolar Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by Scottish Government Rural and Environmental Science and Analytical Services Division (JS, AJL and MT).

References

  1. Andersen JS, Lam YW, Leung AKL et al (2005) Nucleolar proteome dynamics. Nature 433:77–83PubMedCrossRefGoogle Scholar
  2. Andrade LE, Chan EK, Raška I et al (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419PubMedCrossRefGoogle Scholar
  3. Andrade LE, Tan EM, Chan EK (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci U S A 90:1947–1951PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aris JP, Blobel G (1991) cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognised by autoimmune sera. Proc Natl Acad Sci U S A 88:931–935PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bahner I, Lamb J, Mayo MA et al (1990) Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. J Gen Virol 71:2251–2256PubMedCrossRefGoogle Scholar
  6. Barneche F, Steinmetz F, Echeverría M (2000) Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J Biol Chem 275:27212–27220PubMedGoogle Scholar
  7. Bass HW, Nagar S, Hanley-Bowdoin L et al (2000) Chromosome condensation induced by geminivirus infection of mature plant cells. J Cell Sci 113:1149–1160PubMedGoogle Scholar
  8. Bassett C (2012) Cajal bodies and plant RNA metabolism. CRC Crit Rev Plant Sci 31:258–270CrossRefGoogle Scholar
  9. Baunoch DA, Das P, Browning ME et al (1991) A temporal study of the expression of the capsid, cytoplasmic inclusion and nuclear inclusion proteins of tobacco etch potyvirus in infected plants. J Gen Virol 72:487–492PubMedCrossRefGoogle Scholar
  10. Beauchemin C, Laliberté J-F (2007) The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 81:10905–10913PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beauchemin C, Boutet N, Laliberté J-F (2007) Visualisation of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782PubMedCrossRefGoogle Scholar
  12. Belmont A (2003) Dynamics of chromatin, proteins, and bodies within the cell nucleus. Cur Opin Cell Biol 15:304–310CrossRefGoogle Scholar
  13. Bevan AF, Simpson GG, Brown JWS et al (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108:509–518Google Scholar
  14. Boisvert FM, van Koningsbruggen S, Navascues J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585PubMedCrossRefGoogle Scholar
  15. Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bureau M, Leh V, Haas M et al (2004) P6 protein of cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J Gen Virol 85:3765–3775Google Scholar
  18. Canetta E, Kim S-H, Kalinina NO et al (2008) A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J Mol Biol 376:932–937PubMedCrossRefGoogle Scholar
  19. Canto T, Uhrig JF, Swanson M et al (2006) Translocation of tomato bushy stunt virus P19 into the nucleus by ALY proteins compromises its silencing suppressor activity. J Virol 80:9062–9072CrossRefGoogle Scholar
  20. Carmo-Fonseca M (2002) New clues to the function of the Cajal body. EMBO Rep 8:726–727CrossRefGoogle Scholar
  21. Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis-evidence that the coilied body is a kinetic structure. J Cell Biol 120:841–852PubMedCrossRefGoogle Scholar
  22. Carrington JC, Haldeman R, Dolja VV et al (1993) Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol 67:6995–7000PubMedPubMedCentralGoogle Scholar
  23. Cecchini E, Gong Z, Geri C et al (1997) Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhibit a range of symptom-like phenotypes and accumulate inclusion bodies. Mol Plant Microbe Interact 10:1094–1101Google Scholar
  24. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131PubMedCrossRefGoogle Scholar
  25. Collier S, Pendle A, Boudonck K et al (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951PubMedPubMedCentralCrossRefGoogle Scholar
  26. Costa AT, Bravo JP, Makiyama RK et al (2013) Viral counter defense X antiviral immunity in plants: mechanisms for survival. Curr Issues Mol Virol Viral Genet Biotechnol Appl. doi: 10.5772/56253 Google Scholar
  27. Cotton S, Grangeon R, Thivierge K et al (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments and are each derived from a single viral genome. J Virol 83:10460–10471PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crivelli G, Ciuffo M, Genre A et al (2011) Reverse genetic analysis of Ourmiaviruses reveals the nucleolar localization of the coat protein in Nicotiana benthamiana and unusual requirements for virion formation. J Virol 85:5091–5104PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cui X, Wei T, Chowda-Reddy RV et al (2010) The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63PubMedCrossRefGoogle Scholar
  30. Desvoyes B, Scholthof KB (2000) RNA: protein interactions associated with satellites of panicum mosaic virus. FEBS Lett 485:25–28PubMedCrossRefGoogle Scholar
  31. Dougherty WG, Parks TD, Cary SM et al (1989) Characterization of catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310PubMedCrossRefGoogle Scholar
  32. Eggenberger AL, Hajimorad MR, Hill JH (2008) Gain of virulence on Rsv1-genoype soybean by an avirulent soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. Mol Plant Microbe Interact 21:931–936PubMedCrossRefGoogle Scholar
  33. Eichler DC, Craig N (1994) Processing of eukaryotic ribosomal RNA. Prog Nucleic Acids Res Mol Biol 49:197–239CrossRefGoogle Scholar
  34. Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318PubMedCrossRefGoogle Scholar
  35. Feng L, Duan CG, Guo HS (2013) Inhibition of in vivo Slicer activity of Argonaute protein 1 by the viral 2b protein independent of its dsRNA-binding function. Mol Plant Pathol 16:617–622CrossRefGoogle Scholar
  36. Gall JG, Tsvetkov A, Wu Z, Murphy C (1995) Is the sphere organelle/coiled body a universal nuclear component? Dev Genet 16:25–35PubMedCrossRefGoogle Scholar
  37. Gilder AS, Do PM, Carrero ZI et al (2011) Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 22:1070–1079PubMedPubMedCentralCrossRefGoogle Scholar
  38. González I, Martínez L, Rakitina DV et al (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23:294–303PubMedCrossRefGoogle Scholar
  39. Granneman S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296:43–50PubMedCrossRefGoogle Scholar
  40. Haas M, Geldrich A, Bureau M et al (2005) The open reading frame VI product of cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17:927–943PubMedPubMedCentralCrossRefGoogle Scholar
  41. Haas G, Azevedo J, Moissiard G et al (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102–2112PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hajimorad MR, Ding XS, Flasinski S et al (1996) NIa and NIb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology 224:368–379PubMedCrossRefGoogle Scholar
  43. Haupt S, Stroganova T, Ryabov E et al (2005) Nucleolar localisation of potato leafroll virus capsid proteins. J Gen Virol 86:2891–2896PubMedCrossRefGoogle Scholar
  44. Herranz MC, Pallas V, Aparicio F (2012) Multifunctional roles for the N-terminal basic motif of alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Mol Plant Microbe Interact 25:1093–1103PubMedCrossRefGoogle Scholar
  45. Hiscox JA (2002) The nucleolus – a gateway to viral infection? Arch Virol 147:1077–1089PubMedCrossRefGoogle Scholar
  46. Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127PubMedCrossRefGoogle Scholar
  47. Hong Y, Hunt AG (1996) RNA polymerase activity catalyzed by a potyvirus-encoded RNA dependent RNA polymerase. Virology 226:146–151PubMedCrossRefGoogle Scholar
  48. Jenner CE, Wang X, Tomimura K et al (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptoms and avirulence determinant of brassicas. Mol Plant Microbe Interact 16:777–784PubMedCrossRefGoogle Scholar
  49. Johansen IE, Lund OS, Hjulsager CK et al (2001) Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jolly C, Morimoto RI (1999) Stress and the cell nucleus: dynamics of gene expression and structural reorganization. Gene Expr 7:261–270PubMedGoogle Scholar
  51. Jones KW, Gorzynski K, Hales CM et al (2001) Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem 26:38645–38651CrossRefGoogle Scholar
  52. Kim KS, Shock TL, Goodman RM (1978) Infection of Phaseolus vulgaris by bean golden mosaic virus: ultrastructural aspects. Virology 89:22–33PubMedCrossRefGoogle Scholar
  53. Kim KS, Bird J, Rodriguez RL et al (1986) Ultrastructural studies of Jatropha gossypifolia infected with jatropha mosaic virus, a whitefly-transmitted geminivirus. Phytopathology 76:80–85CrossRefGoogle Scholar
  54. Kim S-H, MacFarlane S, Kalinina NO et al (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104:11115–11120PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim S-H, Ryabov EV, Kalinina NO et al (2007b) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J 26:2169–2179PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim S-H, Koroleva OA, Lewandowska D et al (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kleinow T, Tanwir F, Kocher C et al (2009) Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells. Virology 39:212–220CrossRefGoogle Scholar
  58. Kobayashi K, Hohn T (2004) The avirulence domain of cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. Mol Plant Microbe Interact 17:475–483PubMedCrossRefGoogle Scholar
  59. Krenz B, Neugart F, Kleinow T et al (2011) Self-interaction of Abutilon mosaic virus replication initiator protein (Rep) in plant cell nuclei. Virus Res 161:194–197PubMedCrossRefGoogle Scholar
  60. Laird J, Mcinally C, Carr C et al (2013) Identification of the domains of cauliflower mosaic virus protein P responsible for suppression of RNA silencing and salicylic acid signaling. J Gen Virol 94:2777–2789PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lam YW, Lyon CE, Lamond AI (2002) Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 13:2461–2473PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lam YW, Lamond AI, Mann M et al (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612PubMedCrossRefGoogle Scholar
  64. Leh V, Yot P, Keller M et al (2000) The cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana. Virology 266:1–7PubMedCrossRefGoogle Scholar
  65. Léonard S, Plante D, Wittman S et al (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li XH, Carrington JC (1995) Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc Natl Acad Sci U S A 92:457–461PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li YP, Busch RK, Valdez BC et al (1996) C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158PubMedCrossRefGoogle Scholar
  68. Li XH, Valdez P, Olvera RE et al (1997) Functions of the tobacco etch virus NA polymerase (Nib): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol 71:1598–1607PubMedPubMedCentralGoogle Scholar
  69. Li CF, Pontes O, El-Shami M et al (2006) An ARGONAUTE-4-containing nuclear processing center colocalised with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106PubMedCrossRefGoogle Scholar
  70. Liu J-L, Wu Z, Nizami Z et al (2009) Coilin is essential for Cajal body organisation in Drosophila melanogaster. Mol Biol Cell 20:1661–1670PubMedPubMedCentralCrossRefGoogle Scholar
  71. Love AJ, Laird J, Holt J et al (2007) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444PubMedCrossRefGoogle Scholar
  72. Love AJ, Geri C, Laird J et al (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7:e47535PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184PubMedCrossRefGoogle Scholar
  74. Lucy AP, Guo H-S, W-X LI et al (2000) Suppression of post-transcriptional gene silencing by a plant viral protein localised in the nucleus. EMBO J 19:1672–1680PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lyon CE, Bohmann K, Sleeman J et al (1997) Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res 230:84–93PubMedCrossRefGoogle Scholar
  76. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594PubMedPubMedCentralCrossRefGoogle Scholar
  77. Makarov V, Rakitina D, Protopopova A et al (2013) Plant coilin: structural characteristics and RNA-binding properties. PLoS One 8:e53571PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4:223PubMedPubMedCentralCrossRefGoogle Scholar
  79. Matera AG, Shpargel KB (2006) Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18:317–324PubMedCrossRefGoogle Scholar
  80. Matera AG, Izaguire-Sierra M, Praveen K et al (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mongelard F, Bouvet P (2007) Nucleolin: a multiFACeTed protein. Trends Cell Biol 14:80–86CrossRefGoogle Scholar
  82. Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366PubMedCrossRefGoogle Scholar
  83. Morris G (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115PubMedCrossRefGoogle Scholar
  84. Nicol RL, Frey N, Olson EN (2000) From the sarcomere to the nucleus: role of genetics and signalling in structural heart disease. Annu Rev Genomics Hum Genet 1:179–223PubMedCrossRefGoogle Scholar
  85. Ogg SC, Lamond AI (2002) Cajal bodies and coilin--moving towards function. J Cell Biol 159:17–21PubMedPubMedCentralCrossRefGoogle Scholar
  86. Okuwaki M, Iwamatsu A, Tsujimoto M et al (2001) Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 311:41–55PubMedCrossRefGoogle Scholar
  87. Olson MOJ (2004a) Introduction. In: The nucleolus. Landes/Kluwer, Georgetown/New York, pp p1–p9Google Scholar
  88. Olson MOJ (2004b) Nontraditional roles of the nucleolus. In: Olson MOJ (ed) The nucleolus. Landes/Kluwer, Georgetown/New York, pp 329–342Google Scholar
  89. Omarov RT, Qi D, Scholthof KBG (2005) The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 79:9756–9764PubMedPubMedCentralCrossRefGoogle Scholar
  90. Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41PubMedCrossRefGoogle Scholar
  91. Oruetxebarria I, Guo D, Merits A et al (2001) Identification of the genome-linked protein in virions of potato virus A, with comparison to other members in genus Potyvirus. Virus Res 73:103–112PubMedCrossRefGoogle Scholar
  92. Park HS, Himmelbach A, Browning RS et al (2001) A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106:723–733PubMedCrossRefGoogle Scholar
  93. Pih KT, Yi MJ, Liang YS et al (2000) Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. Plant Physiol 123:51–58PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pontes O, Pikaard CS (2008) siRNA and miRNA processing: new functions for Cajal bodies. Curr Opin Genet Dev 18:1–7CrossRefGoogle Scholar
  95. Pontes O, Li CF, Nunes PC et al (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92PubMedCrossRefGoogle Scholar
  96. Qi D, Omarov RT, Scholthof KBG (2008) The complex subcellular distribution of satellite Panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 376:154–164PubMedCrossRefGoogle Scholar
  97. Rajamäki M-L, Valkonen JPT (2003) Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol Plant Microbe Interact 16:25–34PubMedCrossRefGoogle Scholar
  98. Rajamäki M-L, Valkonen JPT (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like potato virus A in Nicotiana species. Plant Cell 21:2485–2502PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rajamäki M-L, Mäki-Valkama T, Mäkinen K et al (2004) Infection with potyviruses. In: Talbot N (ed) Plant-pathogen interactions. Blackwell Publishing, Oxford, pp 68–91Google Scholar
  100. Rakitina DV, Taliansky M, Brown JWS et al (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 39:8869–8880PubMedPubMedCentralCrossRefGoogle Scholar
  101. Raška I, Andrade LEC, Ochs RL et al (1991) Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 195:27–37PubMedCrossRefGoogle Scholar
  102. Rastgou M, Habibi MK, Izadpanah K et al (2009) Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J Gen Virol 90:2525–2535Google Scholar
  103. Reichow SL, Hamma T, Ferré-D’Amaré AR et al (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464PubMedPubMedCentralCrossRefGoogle Scholar
  104. Restrepo MA, Freed DD, Carrington JC (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998PubMedPubMedCentralCrossRefGoogle Scholar
  105. Restrepo-Hartwig MA, Carrington JC (1994) The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J Virol 68:2388–2397PubMedPubMedCentralGoogle Scholar
  106. Rippe K (2007) Dynamic organisation of the cell nucleus. Curr Opin Genet Dev 17:373–380PubMedCrossRefGoogle Scholar
  107. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45PubMedCrossRefGoogle Scholar
  108. Rojas MR, Jiang H, Salati R et al (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291:110–125PubMedCrossRefGoogle Scholar
  109. Rossi M, Genre A, Turina M (2014) Genetic dissection of a putative nucleolar localization signal in the coat protein of ourmia melon virus. Arch Virol 159(5):1187–1192PubMedCrossRefGoogle Scholar
  110. Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  112. Ryabov EV, Oparka KJ, Santa Cruz S et al (1998) Intercellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313PubMedCrossRefGoogle Scholar
  113. Ryabov EV, Kim S-H, Taliansky M (2004) Identification of a nuclear localisation signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J Gen Virol 85:1329–1333PubMedCrossRefGoogle Scholar
  114. Schaad MC, Haldeman-Cahill R, Cronin S et al (1996) Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol 70:7039–7048PubMedPubMedCentralGoogle Scholar
  115. Schaad MC, Jensen PE, Carrington JC (1997) VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol 71:8624–8631PubMedPubMedCentralGoogle Scholar
  116. Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306PubMedCrossRefGoogle Scholar
  117. Schneider R, Grosscheld R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043PubMedCrossRefGoogle Scholar
  118. Semashko MA, González I, Shaw J et al (2012) The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 94:1180–1188PubMedCrossRefGoogle Scholar
  119. Sharma P, Ikegami M (2009) Characterization of signals that dictate nuclear/nucleolar and cytoplasmic shuttling of the capsid protein of tomato leaf curl java virus associated with DNAβ satellite. Virus Res 144:145–153PubMedCrossRefGoogle Scholar
  120. Shaw PJ, Brown JWS (2004) Plant nuclear bodies. Curr Opin Plant Biol 7:614–620PubMedCrossRefGoogle Scholar
  121. Shaw J, Love AJ, Makarova SS et al (2014) Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus 5(1):85–94PubMedPubMedCentralCrossRefGoogle Scholar
  122. Siaw MFE, Shahabuddin M, Ballard S et al (1985) Identification of a protein covalently linked to the ‘-terminus of tobacco vein mottling virus RNA. Virology 142:134–143PubMedCrossRefGoogle Scholar
  123. Sleeman JE, Lyon CE, Platani M et al (1998) Dynamic interactions between slicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp Cell Res 243:290–304PubMedCrossRefGoogle Scholar
  124. Strudwick S, Borden KLB (2002) The emerging roles of translation factor eIF4E in the nucleus. Differentiation 70:10–22PubMedCrossRefGoogle Scholar
  125. Taliansky ME, Robinson DJ (2003) Molecular biology of umbraviruses: phantom warriors. J Gen Virol 84:1951–1960PubMedCrossRefGoogle Scholar
  126. Taliansky M, Roberts IM, Kalinina NO et al (2003) An umbraviral protein, involved in long-distance RNA movement, binds RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040PubMedPubMedCentralCrossRefGoogle Scholar
  127. Taliansky ME, Brown JWS, Rajämaki M-L et al (2010) Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 77:119–158PubMedCrossRefGoogle Scholar
  128. Thompson SR, Sarnow P (2000) Regulation of host cell translation by viruses and effects on cell function. Curr Opin Microbiol 3:366–370PubMedCrossRefGoogle Scholar
  129. Torrance L, Wright KM, Crutzen F et al (2011) Unusual features of pomoviral RNA movement. Front Microbiol 2:1–7CrossRefGoogle Scholar
  130. Trinkle-Mulcahy L, Lamond AI (2007) Toward a high resolution view of nuclear dynamics. Science 318:1403–1407CrossRefGoogle Scholar
  131. Trinkle-Mulcahy L, Lamond AI (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 82:1960–1970CrossRefGoogle Scholar
  132. Tsai CW, Redinbaugh MG, Willie KJ et al (2005) Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins. J Virol 79:5304–5314PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tucker KE, Berciano MT, Jacobs EY et al (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307PubMedPubMedCentralCrossRefGoogle Scholar
  134. Tuteja R, Tuteja N (1998) Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33:407–436PubMedCrossRefGoogle Scholar
  135. Velma V, Carrero ZI, Cosman AM et al (2010) Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett 584:4735–4739PubMedPubMedCentralCrossRefGoogle Scholar
  136. Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33:261–311PubMedCrossRefGoogle Scholar
  137. Wang H, Boisvert D, Kim KK et al (2000) Crystal structure of a fibrillarin homologue from Methanocaldococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 19:317–323PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang X, Zhang Y, Xu J et al (2012) The R-rich motif of beet black scorch virus P7a movement protein is important for the nuclear localization, nucleolar targeting and viral infectivity. Virus Res 167:207–218PubMedCrossRefGoogle Scholar
  139. Warner JR (1990) The nucleolus and ribosome formation. Curr Opin Cell Biol 2:521–527PubMedCrossRefGoogle Scholar
  140. Wright KM, Cowan GH, Lukhovitskaya NI et al (2010) The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localisation, microtubule association, and long distance movement. Mol Plant Microbe Interact 23:1486–1497PubMedCrossRefGoogle Scholar
  141. Yannoni YM, White K (1997) Association of the neuron-specific RNA-binding domain-containing protein ELAV with the coilied body in Drosophila neurons. Chromosoma 105:332–341PubMedCrossRefGoogle Scholar
  142. Zhang X, Yuan Y-R, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhou YC, Garrido-Ramirez ER, Sudarshana MR et al (2007) The N-terminus of the begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in Phaseolus vulgaris. Mol Plant Microbe Interact 20:1523–1534Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrew J. Love
    • 1
  • Jane Shaw
    • 1
  • Michael E. Taliansky
    • 1
    Email author
  1. 1.Cell and Molecular SciencesThe James Hutton InstituteDundeeUK

Personalised recommendations