Interaction of Movement Proteins with Host Factors, Mechanism of Viral Host Cell Manipulation and Influence of MPs on Plant Growth and Development

  • Katrin Link
  • Uwe SonnewaldEmail author


Even more than 100 years after Eduard Tangl first described plasmodesmata (PD) as “open communications” between protoplasts of endosperm cells (Carr 1976), the components of plasmodesmata as well as plasmodesmata-located proteins still remain enigmatic. Considering the fact, that this system is also co-opted by various plant viruses to enable the viral spread throughout the plant, the interaction of viral movement proteins (MPs) with plant host factors inevitably has to target the transport to or through plasmodesmata. This chapter attempts to give an overview concerning experimentally demonstrated interactions of movement proteins with host factors and possible mechanisms of viral host cell manipulations.


Transgenic Plant Tobacco Mosaic Virus Transgenic Tobacco Plant Movement Protein Tomato Spot Wilt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Abutilon mosaic virus


African cassava mosaic virus


Alternanthera mosaic virus


Bamboo mosaic virus


Beet black scorch virus


Bean dwarf mosaic virus


Bimolecular fluorescence complementation


Beet mild curly top virus


Brome mosaic virus


Bioluminescence resonance energy transfer


Beet yellows virus


Cabbage leaf curl virus


Cauliflower mosaic virus


Cucumber mosaic virus


Crucifer tobamovirus


Chinese wheat mosaic virus


Endoplasmic reticulum


Fluorescence recovery after photobleaching


Garlic virus X


Grapevine fanleaf virus


Genomic RNA


Groundnut rosette virus


Liquid chromatography–tandem mass spectrometry


Lettuce mosaic virus


Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry


Melon necrotic spot virus


Molecular weight search


Oilseed rape mosaic virus


Pepino mosaic virus


Plasma membrane


Potato mop-top virus


Plum pox virus


Pea seed-borne mosaic virus


Poa semilatent virus


Potato virus A


Potato virus X


Potato virus Y




Rice stripe virus


Signal peptide


Squash leaf curl virus


Tomato bushy stunt virus


Tomato crinkle leaf yellows virus


Turnip crinkle virus


Tobacco etch virus


Tomato golden mosaic virus


Tomato leaf curl virus


Tobacco mosaic virus


Tomato mosaic virus


Tobacco rattle virus


Tomato spotted wilt virus


Turnip mosaic virus


Turnip vein clearing virus


Tobacco vein-mottling virus


Tomato yellow leaf curl Sardinia virus


Tomato yellow leaf curl virus


Virus-induced gene silencing


Viral RNA


Wild type


Yeast two-hybrid


Zucchini yellow mosaic virus


  1. Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221(1–2):137–143PubMedCrossRefGoogle Scholar
  2. Agbeci M, Grangeon R, Nelson RS, Zheng H, Laliberte JF (2013) Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathog 9(10):e1003683PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allison A, Shalla T (1974) The ultrastructure of local lesions induced by potato virus X: a sequence of cytological events in the course of infection. Phytopathology 64:784–793CrossRefGoogle Scholar
  4. Almon E, Horowitz M, Wang HL, Lucas WJ, Zamski E, Wolf S (1997) Phloem-specific expression of the tobacco mosaic virus movement protein alters carbon metabolism and partitioning in transgenic potato plants. Plant Physiol 115(4):1599–1607PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M, Mely Y, Maule AJ, Ritzenthaler C (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6(9):e1001119PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amari K, Lerich A, Schmitt-Keichinger C, Dolja VV, Ritzenthaler C (2011) Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathog 7(10):e1002327PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J (2013) Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 435(2):493–503PubMedCrossRefGoogle Scholar
  8. Angel CA, Lutz L, Yang X, Rodriguez A, Adair A, Zhang Y, Leisner SM, Nelson RS, Schoelz JE (2013) The P6 protein of cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments. Virology 443(2):363–374PubMedCrossRefGoogle Scholar
  9. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  10. Aranda M, Maule A (1998) Virus-induced host gene shutoff in animals and plants. Virology 243(2):261–267PubMedCrossRefGoogle Scholar
  11. Ashby J, Boutant E, Seemanpillai M, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80(17):8329–8344PubMedPubMedCentralCrossRefGoogle Scholar
  12. Atabekov J, Dorokhov YL (1984) Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 29(31):3–364Google Scholar
  13. Avisar D, Prokhnevsky AI, Dolja VV (2008) Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog. J Virol 82(6):2836–2843PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baebler S, Stare K, Kovac M, Blejec A, Prezelj N, Stare T, Kogovsek P, Pompe-Novak M, Rosahl S, Ravnikar M, Gruden K (2011) Dynamics of responses in compatible potato-potato virus Y interaction are modulated by salicylic acid. PLoS One 6(12):e29009PubMedPubMedCentralCrossRefGoogle Scholar
  15. Balachandran S, Hull RJ, Vaadia Y, Wolf S, Lucas WJ (1995) Alteration in carbon partitioning induced by the movement protein of tobacco mosaic-virus originates in the mesophyll and is independent of change in the plasmodesmal size-exclusion limit. Plant Cell Environ 18(11):1301–1310CrossRefGoogle Scholar
  16. Balachandran S, Hull RJ, Martins RA, Vaadia Y, Lucas WJ (1997) Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiol 114(2):475–481PubMedPubMedCentralCrossRefGoogle Scholar
  17. Baulcombe DC, Chapman S, Cruz SS (1995) Jellyfish green fluorescent protein as a reporter for virus-infections. Plant J 7(6):1045–1053PubMedCrossRefGoogle Scholar
  18. Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6(1):301–311Google Scholar
  19. Bazzini AA, Manacorda CA, Tohge T, Conti G, Rodriguez MC, Nunes-Nesi A, Villanueva S, Fernie AR, Carrari F, Asurmendi S (2011) Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS One 6(12):e28466PubMedPubMedCentralCrossRefGoogle Scholar
  20. Beffa R, Meins F Jr (1996) Pathogenesis-related functions of plant beta-1,3-glucanases investigated by antisense transformation--a review. Gene 179(1):97–103PubMedCrossRefGoogle Scholar
  21. Beffa RS, Hofer RM, Thomas M, Meins F Jr (1996) Decreased susceptibility to viral disease of [beta]-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8(6):1001–1011PubMedPubMedCentralGoogle Scholar
  22. Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS (2013) Influence of host chloroplast proteins on tobacco mosaic virus accumulation and intercellular movement. Plant Physiol 161(1):134–147PubMedCrossRefGoogle Scholar
  23. Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000a) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2(11):826–832PubMedCrossRefGoogle Scholar
  24. Boyko V, Ferralli J, Heinlein M (2000b) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J Cell Mol Biol 22(4):315–325CrossRefGoogle Scholar
  25. Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M (2000c) Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 74(23):11339–11346PubMedPubMedCentralCrossRefGoogle Scholar
  26. Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76(8):3974–3980PubMedPubMedCentralCrossRefGoogle Scholar
  27. Boyko V, Hu Q, Seemanpillai M, Ashby J, Heinlein M (2007) Validation of microtubule-associated tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J Cell Mol Biol 51(4):589–603CrossRefGoogle Scholar
  28. Brandner K, Sambade A, Boutant E, Didier P, Mely Y, Ritzenthaler C, Heinlein M (2008) Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. Plant Physiol 147(2):611–623PubMedPubMedCentralCrossRefGoogle Scholar
  29. Canetta E, Kim SH, Kalinina NO, Shaw J, Adya AK, Gillespie T, Brown JW, Taliansky M (2008) A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J Mol Biol 376(4):932–937PubMedCrossRefGoogle Scholar
  30. Carluccio AV, Zicca S, Stavolone L (2014) Hitching a ride on vesicles: cauliflower mosaic virus movement protein trafficking in the endomembrane system. Plant Physiol 164(3):1261–1270PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carr DJ (1976) Historical perspectives on plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin/Heidelberg, pp 291–295CrossRefGoogle Scholar
  32. Carvalho MF, Lazarowitz SG (2004) Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity. J Virol 78(20):11161–11171PubMedPubMedCentralCrossRefGoogle Scholar
  33. Carvalho MF, Turgeon R, Lazarowitz SG (2006) The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol 140(4):1317–1330Google Scholar
  34. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19(5):913–920PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138(4):1866–1876PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335(6065):207–211PubMedCrossRefGoogle Scholar
  37. Cheng SF, Tsai MS, Huang CL, Huang YP, Chen IH, Lin NS, Hsu YH, Tsai CH, Cheng CP (2013) Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of bamboo mosaic virus. PLoS One 8(4):e62907Google Scholar
  38. Conti G, Rodriguez MC, Manacorda CA, Asurmendi S (2012) Transgenic expression of tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum. Mol Plant Microbe Interact MPMI 25(10):1370–1384Google Scholar
  39. Curin M, Ojangu EL, Trutnyeva K, Ilau B, Truve E, Waigmann E (2007) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of tobacco mosaic virus movement protein in plants. Plant Physiol 143(2):801–811PubMedPubMedCentralCrossRefGoogle Scholar
  40. Deom CM, Schubert KR, Wolf S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci U S A 87(9):3284–3288PubMedPubMedCentralCrossRefGoogle Scholar
  41. Desvoyes B, Faure-Rabasse S, Chen MH, Park JW, Scholthof HB (2002) A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol 129(4):1521–1532PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dinar M, Rudich J, Zamski E (1983) Effects of heat-stress on carbon transport from tomato leaves. Ann Bot (London) 51(1):97–103CrossRefGoogle Scholar
  43. Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4(8):915–928PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461(3):223–228PubMedCrossRefGoogle Scholar
  45. Du Y, Zhao J, Chen T, Liu Q, Zhang H, Wang Y, Hong Y, Xiao F, Zhang L, Shen Q, Liu Y (2013) Type I J-domain NbMIP1 proteins are required for both tobacco mosaic virus infection and plant innate immunity. PLoS Pathog 9(10):e1003659PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dunoyer P, Thomas C, Harrison S, Revers F, Maule A (2004) A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78(5):2301–2309PubMedPubMedCentralCrossRefGoogle Scholar
  47. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMedCrossRefGoogle Scholar
  48. Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20(9):1074–1081PubMedCrossRefGoogle Scholar
  49. Feng Z, Chen X, Bao Y, Dong J, Zhang Z, Tao X (2013) Nucleocapsid of tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol 200(4):1212–1224PubMedCrossRefGoogle Scholar
  50. Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M (2006) Disruption of microtubule organization and centrosome function by expression of tobacco mosaic virus movement protein. J Virol 80(12):5807–5821PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fichtenbauer D, Xu XM, Jackson D, Kragler F (2012) The chaperonin CCT8 facilitates spread of tobamovirus infection. Plant Signal Behav 7(3):318–321PubMedPubMedCentralCrossRefGoogle Scholar
  52. Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EP (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80(13):6648–6656PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18(20):2545–2556PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. Mol Plant Microbe Interact MPMI 16(2):132–140PubMedCrossRefGoogle Scholar
  55. Gal-On A, Raccah B (2000) A point mutation in the FRNK motif of the potyvirus HC-Pro gene alters the symptom expression in cucurbits and exhibits protection against severe homologous virus (vol 90, pg 467, 2000). Phytopathology 90(9):1056–1056Google Scholar
  56. Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J Cell Mol Biol 40(3):376–385CrossRefGoogle Scholar
  57. Gechev T, Gadjev I, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci CMLS 61(10):1185–1197Google Scholar
  58. Genoves A, Navarro JA, Pallas V (2010) The intra- and intercellular movement of melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol Plant Microbe Interact MPMI 23(3):263–272PubMedCrossRefGoogle Scholar
  59. Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99(4):1443–1448PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gorovits R, Moshe A, Ghanim M, Czosnek H (2013) Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8(7):e70280PubMedPubMedCentralCrossRefGoogle Scholar
  61. Grusak MA, Beebe DU, Turgeon R (1996) Phloem loading. Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, New York, pp 209–227Google Scholar
  62. Ham BK, Lee TH, You JS, Nam YW, Kim JK, Paek KH (1999) Isolation of a putative tobacco host factor interacting with cucumber mosaic virus-encoded 2b protein by yeast two-hybrid screening. Mol Cells 9(5):548–555PubMedGoogle Scholar
  63. Harries PA, Palanichelvam K, Yu WC, Schoelz JE, Nelson RS (2009a) The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149(2):1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  64. Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, Nelson RS (2009b) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A 106(41):17594–17599PubMedPubMedCentralCrossRefGoogle Scholar
  65. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17(1):164–181PubMedPubMedCentralCrossRefGoogle Scholar
  66. Havelda Z, Maule AJ (2000) Complex spatial responses to cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. Plant Cell 12(10):1975–1986PubMedPubMedCentralCrossRefGoogle Scholar
  67. Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270(5244):1983–1985PubMedCrossRefGoogle Scholar
  68. Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10(7):1107–1120PubMedPubMedCentralCrossRefGoogle Scholar
  69. Herbers K, Sonnewald U (1998) Altered gene expression brought about by inter- and intracellularly formed hexoses and its possible implications for plant-pathogen interactions. J Plant Res 111(2):323–328CrossRefGoogle Scholar
  70. Herbers K, Monke G, Badur R, Sonnewald U (1995) A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: isolation of cDNAs encoding a new class of pathogenesis-related proteins. Plant Mol Biol 29(5):1027–1038PubMedCrossRefGoogle Scholar
  71. Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996a) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8(5):793–803PubMedPubMedCentralCrossRefGoogle Scholar
  72. Herbers K, Meuwly P, Metraux JP, Sonnewald U (1996b) Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett 397(2–3):239–244PubMedCrossRefGoogle Scholar
  73. Herbers K, Tacke E, Hazirezaei M, Krause KP, Melzer M, Rohde W, Sonnewald U (1997) Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J Cell Mol Biol 12(5):1045–1056CrossRefGoogle Scholar
  74. Herbers K, Takahata Y, Melzer M, Mock HP, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol 1(1):51–59PubMedCrossRefGoogle Scholar
  75. Hofius D, Herbers K, Melzer M, Omid A, Tacke E, Wolf S, Sonnewald U (2001) Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. Plant J 28(5):529–543Google Scholar
  76. Hofius D, Hajirezaei M-R, Geiger M, Tschiersch H, Melzer M, Sonnewald U (2004) RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135(3):1256–1268PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hofius D, Maier AT, Dietrich C, Jungkunz I, Bornke F, Maiss E, Sonnewald U (2007) Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants. J Virol 81(21):11870–11880PubMedPubMedCentralCrossRefGoogle Scholar
  78. Huang Z, Andrianov VM, Han Y, Howell SH (2001) Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47(5):663–675Google Scholar
  79. Huisman MJ, Linthorst HJ, Bol JF, Cornelissen JC (1988) The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol 69(Pt 8):1789–1798PubMedCrossRefGoogle Scholar
  80. Ivanov KI, Puustinen P, Gabrenaite R, Vihinen H, Ronnstrand L, Valmu L, Kalkkinen N, Makinen K (2003) Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15(9):2124–2139PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jang C, Seo EY, Nam J, Bae H, Gim YG, Kim HG, Cho IS, Lee ZW, Bauchan GR, Hammond J, Lim HS (2013) Insights into Alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Front Plant Sci 4:5Google Scholar
  82. Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact MPMI 19(3):350–358PubMedCrossRefGoogle Scholar
  83. Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, Tamai A, Meshi T, Okuno T, Mise K (2007) Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of brome mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 20(6):671–681Google Scholar
  84. Kim MJ, Ham BK, Kim HR, Lee IJ, Kim YJ, Ryu KH, Park YI, Paek KH (2005) In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and cucumber mosaic virus proteins. Plant Mol Biol 59(6):981–994Google Scholar
  85. Kim MJ, Kim HR, Paek KH (2006) Arabidopsis tonoplast proteins TIP1 and TIP2 interact with the cucumber mosaic virus 1a replication protein. J Gen Virol 87(Pt 11):3425–3431PubMedCrossRefGoogle Scholar
  86. Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104(26):11115–11120PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kim MJ, Huh SU, Ham BK, Paek KH (2008) A novel methyltransferase methylates cucumber mosaic virus 1a protein and promotes systemic spread. J Virol 82(10):4823–4833PubMedPubMedCentralCrossRefGoogle Scholar
  88. Knop C, Voitsekhovskaja O, Lohaus G (2001) Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar. Planta 213(1):80–91Google Scholar
  89. Kobayashi K, Cabral S, Calamante G, Maldonado S, Mentaberry A (2001) Transgenic tobacco plants expressing the potato virus X open reading frame 3 gene develop specific resistance and necrotic ring symptoms after infection with the homologous virus. Mol Plant Microbe Ineract 14(11):1274–1285CrossRefGoogle Scholar
  90. Kobayashi K, Sarrobert C, Ares X, Rivero MM, Maldonado S, Robaglia C, Mentaberry A (2004) Over-expression of potato virus X TGBp1 movement protein in transgenic tobacco plants causes developmental and metabolic alterations. Plant Physiol Biochem PPB Soc Fr Physiol Veg 42(9):731–738CrossRefGoogle Scholar
  91. Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132(4):1870–1883PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kramer SR, Goregaoker SP, Culver JN (2011) Association of the tobacco mosaic virus 126kDa replication protein with a GDI protein affects host susceptibility. Virology 414(2):110–118PubMedCrossRefGoogle Scholar
  93. Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401(1):6–17PubMedCrossRefGoogle Scholar
  94. Krenz B, Jeske H, Kleinow T (2012) The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Front Plant Sci 3:291PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kronberg K, Vogel F, Rutten T, Hajirezaei MR, Sonnewald U, Hofius D (2007) The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein. Plant Physiol 145(3):905–918Google Scholar
  96. Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275(5304):1298–1300PubMedCrossRefGoogle Scholar
  97. Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15(9):2058–2075PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17(10):2817–2831Google Scholar
  99. Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74(17):7730–7737PubMedPubMedCentralCrossRefGoogle Scholar
  100. Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberte JF (2004) Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85(Pt 4):1055–1063PubMedCrossRefGoogle Scholar
  101. Lerchl J, Geigenberger P, Stitt M, Sonnewald U (1995) Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell Online 7(3):259–270CrossRefGoogle Scholar
  102. Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107(6):2491–2496Google Scholar
  103. Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150(10):1993–2008PubMedCrossRefGoogle Scholar
  104. Lin B, Heaton LA (2001) An Arabidopsis thaliana protein interacts with a movement protein of turnip crinkle virus in yeast cells and in vitro. J Gen Virol 82(Pt 5):1245–1251Google Scholar
  105. Lu L, Du Z, Qin M, Wang P, Lan H, Niu X, Jia D, Xie L, Lin Q, Wu Z (2009) Pc4, a putative movement protein of rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes 38(2):320–327PubMedCrossRefGoogle Scholar
  106. Lu Y, Yan F, Guo W, Zheng H, Lin L, Peng J, Adams MJ, Chen J (2011) Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. Mol Plant Pathol 12(7):666–676PubMedCrossRefGoogle Scholar
  107. Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993) Influence of the tobacco mosaic-virus 30-Kda movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190(1):88–96CrossRefGoogle Scholar
  108. Lucas WJ, Balachandran S, Park J, Wolf S (1996) Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J Exp Bot 47 Spec No:1119–1128PubMedCrossRefGoogle Scholar
  109. Mansilla C, Aguilar I, Martinez-Herrera D, Sanchez F, Ponz F (2006) Physiological effects of constitutive expression of oilseed rape mosaic tobamovirus (ORMV) movement protein in Arabidopsis thaliana. Transgenic Res 15(6):761–770Google Scholar
  110. Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EP (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318(1):24–31PubMedCrossRefGoogle Scholar
  111. Mathioudakis MM, Veiga R, Ghita M, Tsikou D, Medina V, Canto T, Makris AM, Livieratos IC (2012) Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70. Virus Res 163(1):28–39PubMedCrossRefGoogle Scholar
  112. Mathioudakis MM, Veiga RS, Canto T, Medina V, Mossialos D, Makris AM, Livieratos I (2013) Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Mol Plant Pathol 14(6):589–601PubMedCrossRefGoogle Scholar
  113. Matsushita Y, Hanazawa K, Yoshioka K, Oguchi T, Kawakami S, Watanabe Y, Nishiguchi M, Nyunoya H (2000) In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 81(Pt 8):2095–2102PubMedCrossRefGoogle Scholar
  114. Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12(1):57–66PubMedGoogle Scholar
  115. Matsushita Y, Miyakawa O, Deguchi M, Nishiguchi M, Nyunoya H (2002) Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein. J Exp Bot 53(373):1531–1532PubMedCrossRefGoogle Scholar
  116. Matsushita Y, Ohshima M, Yoshioka K, Nishiguchi M, Nyunoya H (2003) The catalytic subunit of protein kinase CK2 phosphorylates in vitro the movement protein of tomato mosaic virus. J Gen Virol 84(Pt 2):497–505PubMedCrossRefGoogle Scholar
  117. Maule A, Leh V, Lederer C (2002) The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol 5(4):279–284PubMedCrossRefGoogle Scholar
  118. McGarry RC, Barron YD, Carvalho MF, Hill JE, Gold D, Cheung E, Kraus WL, Lazarowitz SG (2003) A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15(7):1605–1618Google Scholar
  119. McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7(12):2101–2114PubMedPubMedCentralCrossRefGoogle Scholar
  120. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410PubMedCrossRefGoogle Scholar
  121. Modena NA, Zelada AM, Conte F, Mentaberry A (2008) Phosphorylation of the TGBp1 movement protein of potato virus X by a Nicotiana tabacum CK2-like activity. Virus Res 137(1):16–23Google Scholar
  122. Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248(1):75–99PubMedCrossRefGoogle Scholar
  123. Niehl A, Amari K, Gereige D, Brandner K, Mely Y, Heinlein M (2012) Control of tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48. Plant Physiol 160(4):2093–2108PubMedPubMedCentralCrossRefGoogle Scholar
  124. Olesen P, Robards A (1990) The neck region of plasmodesmata: general architecture and some functional aspects. In: Parallels in cell to cell junctions in plants and animals. Springer, Berlin/Heidelberg/New York, pp 145–170CrossRefGoogle Scholar
  125. Olesinski AA, Lucas WJ, Galun E, Wolf S (1995) Pleiotropic effects of tobacco-mosaic-virus movement protein on carbon metabolism in transgenic tobacco plants. Planta 197(1):118–126CrossRefGoogle Scholar
  126. Olesinski AA, Almon E, Navot N, Perl A, Galun E, Lucas WJ, Wolf S (1996) Tissue-specific expression of the tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol 111(2):541–550PubMedPubMedCentralCrossRefGoogle Scholar
  127. Oparka KJ, Prior DA, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J Cell Mol Biol 12(4):781–789CrossRefGoogle Scholar
  128. Ouko MO, Sambade A, Brandner K, Niehl A, Pena E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J Cell Mol Biol 62(5):829–839CrossRefGoogle Scholar
  129. Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, Lesemann DE, Schiemann J, Morozov SY, Kellmann JW (2006) At-4/1, an interactor of the tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Mol Plant Microbe Interact MPMI 19(8):874–883PubMedCrossRefGoogle Scholar
  130. Pallas V, Garcia JA (2011) How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 92:2691–2705. doi: 10.1099/Vir.0.034603-0 PubMedCrossRefGoogle Scholar
  131. Park MR, Park SH, Cho SY, Kim KH (2009) Nicotiana benthamiana protein, NbPCIP1, interacting with potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 386(2):257–269Google Scholar
  132. Perbal MC, Thomas CL, Maule AJ (1993) Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195(1):281–285PubMedCrossRefGoogle Scholar
  133. Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S (2012) Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. Plant Physiol 160(2):624–637Google Scholar
  134. Pouwels J, Kornet N, van Bers N, Guighelaar T, van Lent J, Bisseling T, Wellink J (2003) Identification of distinct steps during tubule formation by the movement protein of cowpea mosaic virus. J Gen Virol 84(Pt 12):3485–3494PubMedCrossRefGoogle Scholar
  135. Prokhnevsky AI, Peremyslov VV, Dolja VV (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79(22):14421–14428PubMedPubMedCentralCrossRefGoogle Scholar
  136. Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21(5):1541–1555Google Scholar
  137. Rinne PL, van den Boogaard R, Mensink MG, Kopperud C, Kormelink R, Goldbach R, van der Schoot C (2005) Tobacco plants respond to the constitutive expression of the tospovirus movement protein NS(M) with a heat-reversible sealing of plasmodesmata that impairs development. Plant J Cell Mol Biol 43(5):688–707CrossRefGoogle Scholar
  138. Ritzenthaler C, Pinck M, Pinck L (1995) Grapevine fanleaf nepovirus P38 putative movement protein is not transiently expressed and is a stable final maturation product in vivo. J Gen Virol 76(Pt 4):907–915PubMedCrossRefGoogle Scholar
  139. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11(1):40–45PubMedCrossRefGoogle Scholar
  140. Ruggenthaler P, Fichtenbauer D, Krasensky J, Jonak C, Waigmann E (2009) Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity. Plant Physiol 149(3):1354–1365PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9(12):2073–2088PubMedCrossRefGoogle Scholar
  142. Sasaki N, Ogata T, Deguchi M, Nagai S, Tamai A, Meshi T, Kawakami S, Watanabe Y, Matsushita Y, Nyunoya H (2009) Over-expression of putative transcriptional coactivator KELP interferes with tomato mosaic virus cell-to-cell movement. Mol Plant Pathol 10(2):161–173PubMedCrossRefGoogle Scholar
  143. Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273(2):300–306PubMedCrossRefGoogle Scholar
  144. Schmitt B, Stadler R, Sauer N (2008) Immunolocalization of Solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport. Plant Physiol 148(1):187–199Google Scholar
  145. Schmitz K, Cuypers B, Moll M (1987) Pathway of assimilate transfer between mesophyll cells and minor veins in leaves of Cucumis melo L. Planta 171(1):19–29Google Scholar
  146. Schmitz J, Stussi-Garaud C, Tacke E, Prufer D, Rohde W, Rohfritsch O (1997) In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virology 235(2):311–322PubMedCrossRefGoogle Scholar
  147. Seemanpillai M, Elamawi R, Ritzenthaler C, Heinlein M (2006) Challenging the role of microtubules in tobacco mosaic virus movement by drug treatments is disputable. J Virol 80(13):6712–6715PubMedPubMedCentralCrossRefGoogle Scholar
  148. Selth LA, Dogra SC, Rasheed MS, Randles JW, Rezaian MA (2006) Identification and characterization of a host reversibly glycosylated peptide that interacts with the tomato leaf curl virus V1 protein. Plant Mol Biol 61(1–2):297–310Google Scholar
  149. Semashko MA, Gonzalez I, Shaw J, Leonova OG, Popenko VI, Taliansky ME, Canto T, Kalinina NO (2012) The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 94(5):1180–1188PubMedCrossRefGoogle Scholar
  150. Shalitin D, Wolf S (2000) Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiol 123(2):597–604PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shalitin D, Wang Y, Omid A, Gal-On A, Wolf S (2002) Cucumber mosaic virus movement protein affects sugar metabolism and transport in tobacco and melon plants. Plant Cell Environ 25(8):989–997CrossRefGoogle Scholar
  152. Shimizu T, Yoshii A, Sakurai K, Hamada K, Yamaji Y, Suzuki M, Namba S, Hibi T (2009) Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus. Arch Virol 154(6):959–967PubMedCrossRefGoogle Scholar
  153. Shimomura T, Dijkstra J (1975) The occurrence of callose during the process of local lesion formation. Neth J Plant Pathol 81(3):107–121CrossRefGoogle Scholar
  154. Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97(5):2373–2378PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sonnewald U (1992) Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J 2(4):571–581Google Scholar
  156. Stavolone L, Villani ME, Leclerc D, Hohn T (2005) A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 102(17):6219–6224PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stone BA, Clarke AE (1992) Chemistry and biology of 1, 3-[beta]-Glucans. La Trobe University Press, MelbourneGoogle Scholar
  158. Storms MM, Kormelink R, Peters D, Van Lent JW, Goldbach RW (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214(2):485–493PubMedCrossRefGoogle Scholar
  159. Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang XC, Yuan M (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22(4):1373–1387PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sun K, Hunt K, Hauser BA (2004) Ovule abortion in Arabidopsis triggered by stress. Plant Physiol 135(4):2358–2367Google Scholar
  161. Sun KL, Cui YH, Hauser BA (2005) Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort. Planta 222(4):632–642PubMedCrossRefGoogle Scholar
  162. Tacke E, Schmitz J, Prüfer D, Rohde W (1993) Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein interactions. Virology 197(1):274–282PubMedCrossRefGoogle Scholar
  163. Tacke E, Salamini F, Rohde W (1996) Genetic engineering of potato for broad-spectrum protection against virus infection. Nat Biotechnol 14(11):1597–1601PubMedCrossRefGoogle Scholar
  164. Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6(1):e7PubMedPubMedCentralCrossRefGoogle Scholar
  165. Turgeon R, Gowan E (1990) Phloem loading in coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol 94(3):1244–1249PubMedPubMedCentralCrossRefGoogle Scholar
  166. Turgeon R, Medville R (2004) Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiol 136(3):3795–3803PubMedPubMedCentralCrossRefGoogle Scholar
  167. Turgeon R, Beebe DU, Gowan E (1993) The intermediary cell: minor-vein anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae. Planta 191(4):446–456Google Scholar
  168. Van Bel A (1993) Strategies of phloem loading. Annu Rev Plant Biol 44(1):253–281CrossRefGoogle Scholar
  169. Vanlent J, Storms M, Vandermeer F, Wellink J, Goldbach R (1991) Tubular structures involved in movement of cowpea mosaic-virus are also formed in infected cowpea protoplasts. J Gen Virol 72:2615–2623CrossRefGoogle Scholar
  170. Vaquero C, Turner AP, Demangeat G, Sanz A, Serra MT, Roberts K, Garcia-Luque I (1994) The 3a protein from cucumber mosaic virus increases the gating capacity of plasmodesmata in transgenic tobacco plants. J Gen Virol 75(Pt 11):3193–3197PubMedCrossRefGoogle Scholar
  171. Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA (2012) Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 8(4):e1002639PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  173. Vogel F, Hofius D, Sonnewald U (2007) Intracellular trafficking of potato leafroll virus movement protein in transgenic Arabidopsis. Traffic 8(9):1205–1214Google Scholar
  174. Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M (2008) Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 4(4):e1000038PubMedPubMedCentralCrossRefGoogle Scholar
  175. von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW (2001) Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol Biochem 39(12):1083–1093CrossRefGoogle Scholar
  176. Wang X, Zhang Y, Xu J, Shi L, Fan H, Han C, Li D, Yu J (2012) The R-rich motif of beet black scorch virus P7a movement protein is important for the nuclear localization, nucleolar targeting and viral infectivity. Virus Res 167(2):207–218PubMedCrossRefGoogle Scholar
  177. Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234(1):84–92Google Scholar
  178. Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246(4928):377–379PubMedCrossRefGoogle Scholar
  179. Wright KM, Wood NT, Roberts AG, Chapman S, Boevink P, Mackenzie KM, Oparka KJ (2007) Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP. Traffic 8(1):21–31PubMedCrossRefGoogle Scholar
  180. Yoshii A, Shimizu T, Yoshida A, Hamada K, Sakurai K, Yamaji Y, Suzuki M, Namba S, Hibi T (2008) NTH201, a novel class II KNOTTED1-like protein, facilitates the cell-to-cell movement of tobacco mosaic virus in tobacco. Mol Plant Microbe Interact MPMI 21(5):586–596PubMedCrossRefGoogle Scholar
  181. Yoshioka K, Matsushita Y, Kasahara M, Konagaya K, Nyunoya H (2004) Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells 17(2):223–229PubMedGoogle Scholar
  182. Yuan Z, Chen H, Chen Q, Omura T, Xie L, Wu Z, Wei T (2011) The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of rice stripe virus. Virus Res 159(1):62–68PubMedCrossRefGoogle Scholar
  183. Zhou Y, Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL (2011) Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 85(22):11821–11832PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations