Advertisement

Visualization and Data Mining for High Dimensional Data

–With Connections to Information Retrieval
  • Alfred InselbergEmail author
  • Pei Ling Lai
Chapter
Part of the Communications in Computer and Information Science book series (CCIS, volume 505)

Abstract

The first, and still more popular application, of parallel coordinates is in exploratory data analysis (EDA); discovering data subsets (relations) satisfying given objectives.

References

  1. 1.
    Bassett, E.W.: IBM’s IBM fix. Ind. Comput. 14(41), 23–25 (1995)Google Scholar
  2. 2.
    Becker, S., Hinton, G.: A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature (Lond.) 355, 161–163 (1992)CrossRefGoogle Scholar
  3. 3.
    Bollobas, B.: Graph Theory. Springer, New York (1979)CrossRefGoogle Scholar
  4. 4.
    Eickemeyer, J.: Visualizing p-flats in N-space using parallel coordinates. Ph.D. thesis, Dept. Comp. Sc., UCLA (1992)Google Scholar
  5. 5.
    Fayad, G., Piatesky-Shapiro, U.M., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge Mass. (1996)Google Scholar
  6. 6.
    Friendly, M., et al.: Milestones in Thematic Cartography (2005). www.math.yorku.ca/scs/SCS/Gallery/milestones/
  7. 7.
    Fyfe, C., Lai, P.L.: ICA using kernel canonical correlation analysis. In: ICA 2000 (2000)Google Scholar
  8. 8.
    Gennings, C., Dawson, K.S., Carter, W.H., Myers, R.H.: Interpreting plots of a multidimensional dose-response surface in parallel coordinates. Biometrics 46, 719–35 (1990)CrossRefGoogle Scholar
  9. 9.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)CrossRefGoogle Scholar
  10. 10.
    Hurley, C.B., Oldford, R.W.: Pairwise display of high-dimensional information via eulerian tours and hamiltonian decompositions. J. Comput. Graph. Stat. 19(4), 861–886 (2010)CrossRefGoogle Scholar
  11. 11.
    Inselberg, A.: Visual data mining with parallel coordinates. Comput. Stat. 13(1), 47–64 (1998)zbMATHGoogle Scholar
  12. 12.
    Inselberg, A.: Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications. Springer, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Inselberg, A., Avidan, T.: The automated multidimensional detective. In: Proceedings of IEEE Information Visualization 1999, pp. 112–119. IEEE Comp. Soc., Los Alamitos (1999)Google Scholar
  14. 14.
    Inselberg, A., Lai, P.L.: Visualizing families of close planes, 66. In: Proceedings of the 5th Asian Conference on Statistics, Hong Kong (2005)Google Scholar
  15. 15.
    Lai, P.L., Leen, G., Fyfe, C.: The sphere-concatenate method for gaussian process canonical correlation analysis. In: Oja, E., Kollias, S.D., Stafylopatis, A., Duch, W. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 302–310. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Lucas, D.E.: Recréations Mathematiques, vol. II. Gauthier Villars, Paris (1892)zbMATHGoogle Scholar
  17. 17.
    Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)zbMATHGoogle Scholar
  18. 18.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  19. 19.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Francisco (1993) Google Scholar
  20. 20.
    Stone, J.: Learning perpetually salient visual parameters using spationtemporal smoothness constraints. Neural Comput. 8(7), 1463–1492 (1996)CrossRefGoogle Scholar
  21. 21.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphic Press, Connecticut (1983) Google Scholar
  22. 22.
    Tufte, E.R.: Envisioning Information. Graphic Press, Connecticut (1990)Google Scholar
  23. 23.
    Tufte, E.R.: Visual Explanation. Graphic Press, Connecticut (1996)Google Scholar
  24. 24.
    Ying, W., Fyfe, C., Lai, P.L.: Two forms of immediate reward reinforcement learning for exploratory data analysis. Neural Netw. 21(6), 847–855 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Electronic EngineeringSouthern Taiwan University of Science and TechnologyTainanTaiwan

Personalised recommendations