Skip to main content

The Use of Wood Products for Improving Air Quality

  • Chapter
  • First Online:
  • 447 Accesses

Abstract

This chapter further explores the application of wood waste and recovered products in environmental protection but is more focused on the systems for environmental protection engineering where the use of wood products and waste, with respect to the principles of sustainable development, is more favorable owing to lower costs, greater availability, or even more powerful environmental effects compared to other popular materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asadi M, Najafpour GD, Hashemiyeh BA, Mohammadi M (2009) Removal of acetone from contaminated air in biofilter using Pseudomonas putida. Am Eurasian J Agric Environ Sci 5(5):712–719

    Google Scholar 

  • Baltrėnas P, Paliulis D (2002) Adsorptional air cleaning filters. Technika, Vilnius

    Google Scholar 

  • Baltrėnas P, Vaiškūnaitė R (2002) Biologinis oro valymas su aktyvinta žievių įkrova. Aplinkos inžinerija 10(2):18–20

    Google Scholar 

  • Baltrėnas P, Vaiškūnaitė R (2003) Microbiological investigation of activated pine bark packing material for biofilters. J Environ Eng Landsc Manag 11:3–9

    Google Scholar 

  • Baltrėnas P, Vaiškūnaitė R (2004) A biofilter containing a biologically active layer of pine bark for removing volatile hydrocarbons from air. Chem Petrol Eng 40(7):417–420

    Article  Google Scholar 

  • Baltrėnas P, Zagorskis A (2007a) Investigation into determining the humidity of charge used for biological air treatment. J Environ Eng Landsc Manag 15(4):193–199

    Google Scholar 

  • Baltrėnas P, Zagorskis A (2007b) Research into biological air treatment. Ekologija 53(3):84–88

    Google Scholar 

  • Baltrėnas P, Zagorskis A (2009a) Biological air cleaning using activated wood chips and bark charge. In: Navarro-Avino JP (ed) Phytoremediation: the green salvation of the world. Department of Agrarian Sciences and of the Natural Environment, ESTCE University Castellon. Research Signpost, Spain. ISBN 9788130802695, pp 207–230

    Google Scholar 

  • Baltrėnas P, Zagorskis A (2009b) Investigation into the air treatment efficiency of biofilters of different structures. J Environ Eng Landsc 18(1):23–31

    Article  Google Scholar 

  • Baltrėnas P, Zagorskis A (2009c) Investigation of cleaning efficiency of a biofilter with an aeration chamber. J Environ Eng Landsc 17(1):12–19

    Article  Google Scholar 

  • Baltrėnas P, Baltrėnaitė E, Spudulis E (2015a) Biochar from pine and birch morphology and pore structure change by treatment in biofilter. Water Air Soil Pollut 226(69):1–14

    Google Scholar 

  • Baltrėnas P, Mačaitis K, Baltrėnaitė E (2015b) Investigation into the efficiency of removing acetone from air applying a straight lamellar plate-type biofilter with a capillary system for the humidification of the packing material. J Vitic Ecol 30(5):2–18

    Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar—production and properties. Bioresour Technol 102(2):1886–1891

    Article  Google Scholar 

  • Bohn H (1992) Consider biofiltration for decontaminating gases. Chem Eng Prog 88(4):34–40

    Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochar of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  Google Scholar 

  • Dandge VS (2012) Effect of some volatile compound on some deuteromycetean fungi. Rec Res Sci Technol 4:5–7

    Google Scholar 

  • Delhomenie MC, Bibeau L, Bredin N, Roy S, Broussau S, Brzezinski R, Kugelmass JL, Heitz M (2002) Biofiltration of air contaminated with toluene on a compost-based bed. Adv Environ Res 6:239–254

    Article  Google Scholar 

  • Deshusses MA, Cox HHJ (1999) Biotrickling filters for air pollution control. Environ Prog 18:180–196

    Article  Google Scholar 

  • Devinny JS, Ramesh J (2005) A phenomenological review of biofilter models. Chem Eng J 113:187–196

    Article  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. CRC Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd edn. IHW-Verlag, Eching, 384 p

    Google Scholar 

  • EBC (2012) European Biochar Certificate. Guidelines for a sustainable production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/en/download. Version 4.7 of 18th Oct 2013. Accessed 17 Mar 2015

  • Elmrini H, Bredin N, Shareefdeen Z, Heitz M (2004) Biofiltration of xylene emissions: bioreactor response to variations in the pollutant inlet concentration and gas flow rate. Chem Eng J 100:149–158

    Article  Google Scholar 

  • Gallastegui G, Ramirez AA, Elias A, Jones JP, Heitz M (2011) Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material. Bioresource Technol 102:7657–7665

    Article  Google Scholar 

  • Gutiérrez MC, Serrano A, Martín MA, Chica AF (2014) Odour in composting processes at pilot scale: monitoring and biofiltration. Environ Technol 35:1676–1684

    Article  Google Scholar 

  • Hartikainen T, Martikainen PJ, Olkkonen M, Ruuskanen J (2002) Peat biofilters in long-term experiments for removing odorous sulphur compounds. Water Air Soil Pollut 133:335–348

    Article  Google Scholar 

  • Ip AWM, Barford JP, McKay G (2010) Biodegradation of reactive Black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. J Chem Technol Biotechnol 85:658–667

    Article  Google Scholar 

  • Jankevičius K, Liužinas R (2003) Aplinkos biologinis valymas. Apyaušris, Vilnius, 106 p

    Google Scholar 

  • Jorio H, Viel G, Heitz M (2002) Biofiltration de l’air pollué par le xylene: observations expérimentales. Can J Civil Eng 29:543–553

    Article  Google Scholar 

  • Jorio H, Jin Y, Elmrini H, Nikiema J, Brzezinski R, Heitz M (2009) Treatment of VOCs in biofilters inoculated with fungi and microbial consortium. Environ Technol 30(5):477–485

    Article  Google Scholar 

  • Kennes C, Thalasso F (1998) Waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319

    Article  Google Scholar 

  • Khammar N, Malhautier L, Degrange V, Lensi R, Godon JJ, Fanlo JL (2005) Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 98:476–490

    Article  Google Scholar 

  • Krailas S, Pham QT, Amal R, Jiang JK, Heitz M (2000) Effect of inlet mass loading, water and total bacteria count on methanol elimination using upward flow and downward flow biofilters. J Chem Technol Biotechnol 75:299–305

    Article  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, USA

    Google Scholar 

  • Lee SH, Li C, Heber CL, Ni J, Huang H (2013) Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases. Bioresour Technol 127:366–377

    Article  Google Scholar 

  • Lehmann J, Joseph S (eds) (2010) Biochar for environmental management: science and technology. Earthscan, London, 416 p

    Google Scholar 

  • Liu Y, Quan X, Zhao Y, Chen S, Zhao H (2005) Removal of ternary VOCs in air streams at high loads using a compost-based biofilter. Biochem Eng J 23(1):85–95

    Article  Google Scholar 

  • Lugauskas A, Bridžiuvienė D, Levinskaitė L, Paškevičius A, Pečiulytė D, Repečkienė J, Salina O, Varnaitė R (1997) Mikrobiologiniai medžiagų pažeidimai. UAB “Valstiečių laikraštis”, Vilnius, 469 p

    Google Scholar 

  • Maestre JP, Gamisans X, Gabriel D, Lafuente J (2007) Fungal biofilters for toluene biofiltration: evaluation of the performance with four packing materials under different operating conditions. Chemosphere 67:684–692

    Article  Google Scholar 

  • McNevin D, Barford J (2000) Biofiltration as an odour abatement strategy. Biochem Eng J 5:231–242

    Article  Google Scholar 

  • Miller MJ, Allen DG (2004) Transport of hydrophobic pollutants through biofilms in biofilters. Chem Eng Sci 59:3515–3525

    Article  Google Scholar 

  • Mohseni M, Allen DG (2000) Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem Eng Sci 55:1545–1558

    Article  Google Scholar 

  • Mudliar S, Giri B, Padoley K, Satpue D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours: a review. J Environ Manage 91:1039–1054

    Article  Google Scholar 

  • Pagans E, Font X, Sanchez A (2005) Biofiltration for ammonia removal from composting exhaust gases. Chem Eng J 113:105–110

    Article  Google Scholar 

  • Pielech-Przybylska K, Ziemiński K, Szopa JS (2006) Acetone biodegradation in a trickle-bed biofilter. Int Biodeterior Biodegradation 57(4):200–206

    Article  Google Scholar 

  • Prachuabmorn A, Panich N (2010) Isolation and identification of xylene degrading microorganisms from biofilter. J Appl Sci 10(7):585–589

    Article  Google Scholar 

  • Rahul MAK, Balomajumder C (2013) Biological treatment and modelling aspect of BTEX abatement process in a biofilter. Bioresour Technol 142:9–17

    Article  Google Scholar 

  • Rene ER, Špačkova R, Veiga MC, Kennes C (2010) Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus. J Hazard Mater 184:204–214

    Article  Google Scholar 

  • Sakuma T, Jinsiriwanit S, Hattori T, Deshusses MA (2008) Removal of ammonia from contaminated air in a biotrickling filter—denitrifying bioreactor combination system. Water Res 42:4507–4513

    Article  Google Scholar 

  • Saravanan V, Rajamohan N (2009) Treatment of xylene polluted air using press mud-based biofilter. J Hazard Mater 162:981–988

    Article  Google Scholar 

  • Schmidt HP (2012) 55 uses of biochar. Ithaka J 1:286–289, Available at: www.ithaka-journal.net

    Google Scholar 

  • Shareefdeen Z, Herner B, Webb D, Wilson S (2003) Biofiltration eliminates nuisance chemical odors from industrial air streams. J Ind Microbiol Biotechnol 30:168–174

    Article  Google Scholar 

  • Singh B, Pal Singh B, Cowie LA (2010a) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525

    Article  Google Scholar 

  • Singh K, Singh RS, Rai BN, Upadhyay SN (2010b) Biofiltration of toluene using wood charcoal as the biofilter media. Bioresour Technol 101:3947–3951

    Article  Google Scholar 

  • Singh RS, Rai BN, Upadhyay SN (2010c) Removal of toluene vapour from air stream using a biofilter packed with polyurethane foam. Process Saf Environ Prot 88:366–371

    Article  Google Scholar 

  • Torkian A, Dehghanzadeh R, Hakimjavadi M (2003) Biodegradation of aromatic hydrocarbons in a compost biofilter. J Chem Technol Biotechnol 78:795–801

    Article  Google Scholar 

  • Tymczyna L, Chmielowiec-Korzeniowska A, Saba L (2004) Biological treatment of laying house air with open biofilter use. Pol J Environ Stud 13:425–428

    Google Scholar 

  • Vaiškūnaitė R, Baltrėnas P (2007) Influence of biofilter’s temperature regimes on air cleaning. Ekologija 53(3):80–83

    Google Scholar 

  • van Groenestijn JW, Hesselink PGM (1993) Biotechniques for air pollution control. Biodegradation 4(4):283–301

    Article  Google Scholar 

  • Williamson K, McCarty PLA (1976a) Model of substrate utilization by bacterial films. J Water Pollut Control Fed 48:9–24

    Google Scholar 

  • Williamson K, McCarty PLA (1976b) Verification studies of the biofilm model for bacterial substrate utilization. J Water Pollut Control Fed 48:281–296

    Google Scholar 

  • Wu D, Quan X, Zhao Y, Chen S (2006) Removal of p-xylene from an air stream in a hybrid biofilter. J Hazard Mater 136(2):288–295

    Article  Google Scholar 

  • Yoon IK, Park CH (2002) Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. J Biosci Bioeng 93:165–169

    Article  Google Scholar 

  • Zhu X, Suldan MT, Pruden A, Yang C, Alonso C, Klm BJ, Klm BR (2004) Effect of substrate Henry’s constant on biofilter performance. J Air Waste Manage Assoc 54:409–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016). The Use of Wood Products for Improving Air Quality. In: The Sustainable Role of the Tree in Environmental Protection Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-25477-7_7

Download citation

Publish with us

Policies and ethics