Skip to main content

Use of Wood Products for Water and Soil Quality Improvement

  • Chapter
  • First Online:
Book cover The Sustainable Role of the Tree in Environmental Protection Technologies

Abstract

This chapter deals with the life cycle of trees where the process of using manufactured wood waste in ecotechnologies takes place, thereby recovering valuable components of a wood product (e.g., biochar) and converting some waste into raw materials (e.g., using ash for reclaiming soil). Two products of the thermal treatment of wood, including a solid product of wood pyrolysis (biochar) and its full oxidation product (ash), as well as their use in environmental protection engineering and agriculture, are examined. Recent years have seen a major increased interest in biochar owing to the greater stability of carbon compounds and characteristics improving the properties of soil and forming the advantages of biochar in light of the problems related to climate change and soil fertility. The assessment of the composition of the different types of wood ash is a separate topic. In the case of fire, ash determines changes in the chemical composition of soil. Along with an increase in the use of biofuel in energetics (in Lithuania in particular), the utilization of combustion products raises environmental concerns. The chapter describes the concentrations of metals in the ash of different trees and environmental risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper no. 56. FAO, Rome

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007a) Accumulation of heavy metals in tree seedlings from soil amended with sewage sludge. Ekologija 53(4):68–76

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007b) Model of heavy metals transport from soil to the plant. In: Abstracts of COST Action 859: phytotechnologies to promote sustainable land use and improve food safety: nutrient biofortification and exclusion of pollutants in food plants, WG1 & WG3 workshop at Sede Boqer Campus, Israel, 23–25 Oct 2007, p 29

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007c) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15(4):200–207

    Google Scholar 

  • Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178

    Article  Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014a) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res Int 21(1):299–313

    Article  Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2014b) Integrative deposit media method for quantitative evaluation of aerogenic metal contamination risk. In: Abstracts of Goldschmidt 2014, 8–13 June. European Association of Geochemistry, Sacramento, CA, USA, p 109

    Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2014c) Use of radial differentiation coefficient in assessment of contaminant behaviour in soil profile. In: Proceedings of COST Action Project FA 0905 “Mineral-Improved Crop Production for Healthy Food and Feed”. Final conference, 17–19 Mar 2014, Antalya-Belek, Turkey. Sabanci University, Istanbul. ISBN 9786054348725, pp 86–87

    Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Butkus D, Lietuvninkas A (2015) Using the dynamic factors method in bioindication and phytoremediation. In: Phytoremediation: management of environmental contaminants, vol 1. Springer Verlag, Switzerland. ISBN 9783319103945, pp 21–30

    Google Scholar 

  • Baltrėnas P, Čepanko V (2009) Accumulation of heavy metals in short-rotation willow. Ekologija 55(2):153–163

    Article  Google Scholar 

  • Baltrėnas P, Baltrėnaitė E, Kleiza J, Švedienė J. Design of the biofilter with an inoculated or non-inoculated biochar-based medium and its efficiency of removing acetone, ammonia and xylene, in preparation

    Google Scholar 

  • Beghin R, Cherubini P, Battipaglia G, Siegwolf R, Saurer M, Bovio G (2011) Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 25:627–636

    Article  Google Scholar 

  • Biokuro potencialo Lietuvoje įvertinimas, biokuro kainų prognozė, biokuro panaudojimo socialinės naudos įvertinimas ir biokuro panaudojimo plėtrai reikalingų valstybės intervencijų pasiūlymai. Medienos biokuro išteklių, jų panaudojimo kurui ekonominių bei socialinių veiksnių įvertinimas ir prognozės: Baigiamoji ataskaita. Lietuvos agrarinių ir miškų mokslų centro filialas Miškų institutas (2013) https://docs.google.com/viewer?docex=1&url=http://www.lsta.lt/files/studijos/2013%20met%C5%B3/2Priedas_ATASKAITA_Litbioma_2013_05_03.pdf. Accessed 17 Mar 2015

  • Biokuro potencialo Lietuvoje įvertinimas, biokuro kainų prognozė, biokuro panaudojimo socialinės naudos įvertinimas ir biokuro panaudojimo plėtrai reikalingų valstybės intervencijų pasiūlymai: Santrauka (2013) https://docs.google.com/viewer?docex=1&url=http://www.biokuras.lt/uploads/new_assigned_files/str.pdf. Accessed 17 Mar 2015

  • Bodi MB, Solera JM, Doerr SH, Cerda A (2011) The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160:599–607

    Article  Google Scholar 

  • Boersma L, Lindstrom FT, Childs SW (1991) Model for steady state coupled transport in xylem and phloem. Agron J 83:401–415

    Article  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102

    Article  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energy Rev 4(1):1–73

    Article  Google Scholar 

  • Byrne C (1996) Polymer, ceramic, and carbon composites derived from wood. Ph.D. thesis, The Johns Hopkins University, USA

    Google Scholar 

  • Carter CC, Foster CD (2004) Prescribed burning and productivity in southern pine forests: a review. For Ecol Manage 191:93–109

    Article  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  Google Scholar 

  • Desta MB (2013) Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. J Thermodyn. Article ID 375830. doi:10.1155/2013/375830

    Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. CRC Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Driscoll KG, Arocena JM, Massicotte HB (1999) Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forests of British Columbia's central interior, Canada. For Ecol Manage 121:227–237

    Article  Google Scholar 

  • Drysdale D (1985) An introduction to fire dynamics, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • EBC (2012) European Biochar Certificate. Guidelines for a sustainable production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/en/download. Version 4.7 of 18th Oct 2013. Accessed 17 Mar 2015

  • European Commission (2005) Biomass action plan: communication from the commission, 44 p

    Google Scholar 

  • Gabet EJ, Bookter A (2011) Physical, chemical, and hydrological properties of Ponderosa pine ash. Int J Wildland Fire 20:443–452

    Article  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400

    Article  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc B Biol Sci 362:187–196

    Article  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nat Geosci 2:2. doi:10.1038/ngeo395

    Article  Google Scholar 

  • Glazovskaia MA (1988) Geochemistry of natural and technogenic landscapes in USSR. High School, Moscow, 328 p (in Russian)

    Google Scholar 

  • Gray DM, Dighton J (2006) Mineralization of forest litter nutrients by heat and combustion. Soil Biol Biochem 38:1469–1477

    Article  Google Scholar 

  • Greenwood CT, Milne EA (1968) Starch degrading and synthesizing enzymes: a discussion of their properties and action pattern. Adv Carbohydr Chem 23:281–366

    Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010) Heavy metal concentrations in plants and different harvestable parts: a soil–plant equilibrium model. Environ Pollut 158:2659–2663

    Article  Google Scholar 

  • Haberstroh PR, Brandes JA, Gélinas Y, Dickens AF, Wirick S, Cody G (2006) Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy. Geochim Cosmochim Acta 70(6):1483–1494

    Article  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31(10):945–958

    Article  Google Scholar 

  • Hung H, Mackay DA (1997) A novel and simple model of uptake of organic chemical by vegetation from air and soil. Chemosphere 35:959–977

    Article  Google Scholar 

  • Hvitved-Jacobsen T, Vollertsen J, Nielsen AH (2009) Urban and highway stormwater pollution. CRC Press, New York

    Google Scholar 

  • IBI (2015) Climate change and carbon sequestration. http://www.biochar-international.org/biochar/carbon. Accessed 17 Mar 2015

  • Iglesias T, Cala V, Gonzalez J (1997) Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area. Sci Total Environ 204:89–96

    Article  Google Scholar 

  • Jakienė E, Liakas V, Klimas E, Bačkaitis J (2013) Energetinių žolinių ir sumedėjusių augalų auginimo technologijos mokomoji knyga. Akademija, Kaunas, 199 p

    Google Scholar 

  • Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood, New York, NY

    Google Scholar 

  • Jimura K, Ito H, Chino M, Morishita Т, Hirata H (1977) Behavior of contaminant heavy metals in soil-plant system. In: Proc. inst. sem. SEFMIA, Tokyo, 357 p

    Google Scholar 

  • Joseph S, Peacocke C, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, 416 p

    Google Scholar 

  • Kabata Pendias A (2010) Trace elements in soils and plants. CRC Press/Taylor and Francis, Boca Raton, FL, 520 p

    Book  Google Scholar 

  • Kabata Pendias A, Pendias K (1989) Microelements in soil and plants. World, Moscow, 439 p (in Russian)

    Google Scholar 

  • Kaigorodov RV, Ruk V (2005) Balanse of zinc and copper in several agroecosystems of Low Sacsony (Germany). Biology 6:159–160 (in Russian)

    Google Scholar 

  • Keller K (2009) Effektibnost I nedostatki fitiekstraktsii rasteniiami s vysikoi biomassoi na primere ivy. In: Prasad MNV, Sadzhvana KS, Naidu R (eds) Mikroelementy v okruzhaiushchei srede: biogeokhimiia, biotekhnologiia i bioremediatsiia. FIZMATLIT, Moskva, pp 685–706 (in Russian)

    Google Scholar 

  • Komkienė J, Baltrėnaitė E (2015) Biochar as adsorbent for removal of heavy metal ions (cadmium(II), copper(II), lead(II), zinc(II)) from aqueous phase. Int J Environ Sci Technol. doi:10.1007/s13762-015-0873-3

    Google Scholar 

  • Krastinytė V, Baltrėnaitė E, Lietuvninkas A (2013) Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery. Environ Technol 34(6):757–763

    Article  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2010) Characteristics of biochar: organo–chemical properties. In: Joseph S, Lehmann J (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 53–65

    Google Scholar 

  • Landner L, Reuther R (2004) Metals in society and in the environment: a critical review of current knowledge on fluxes, speciation, bioavailability and risk for adverse effects of copper, chromium, nickel and zinc. Kluwer Academic Publishers, Dordrecht, 406 p

    Google Scholar 

  • Liao JH, Wang HH, Tsai CC, Hseu ZY (2006) Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. For Ecol Manage 235:174–185

    Article  Google Scholar 

  • Lietuvninkas A (2002a) Anthropogenic geochemical anomalies and environmental protection. Publishing House of Scientific and Technological Literature, Tomsk, 290 p (in Russian)

    Google Scholar 

  • Lietuvninkas AI (2002b) Antropogennye geokhimicheskie anomalii i prirodnaia sreda. Izd-vo NTL, Tomsk, 290 p (in Russian)

    Google Scholar 

  • Lietuvninkas A (2012) Aplinkos geochemija [Environmental geochemistry]. Technika, Vilnius, 312 p (in Lithuanian)

    Book  Google Scholar 

  • Lin SH (1993) Adsorption of disperse dye by various adsorbents. J Chem Technol Biotechnol 58(2):107–210

    Google Scholar 

  • Low KS, Lee CS (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. J Process Biochem 36:59–64

    Article  Google Scholar 

  • Madorsky SL (1964) Thermal degradation of organic polymer. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Malinina MS (2012) Variation of chemical elements distribution in albeluvisols in a long-term application of sewage sludge. Soil Manag 12:1269–1277 (in Russian)

    Google Scholar 

  • Marozas V, Racinskas J, Bartkevicius E (2007) Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For Ecol Manage 250:47–55

    Article  Google Scholar 

  • Martinaitis V, Lukoševičius V (2014) Šilumos gamyba deginant kurą. Technika, Vilnius, 232 p

    Book  Google Scholar 

  • Matsi T, Keramidas VZ (1999) Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environ Pollut 140:107–112

    Article  Google Scholar 

  • ME (2008) Lithuanian forestry statistics 2008. Ministry of Environment, Lithuania (in Lithuanian)

    Google Scholar 

  • Medienos kuro pelenų tvarkymo ir naudojimo taisyklės (2011) Patvirtinta Lietuvos Respublikos aplinkos ministro 2011 m. sausio 5 d. įsakymu Nr. D1-14

    Google Scholar 

  • Moreno GB, Baath E (2009) Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol Biochem 41:2517–2526

    Article  Google Scholar 

  • Moreno JL, Sanchez-Marin A, Hernandez T, Garcia C (2006) Effect of cadmium on microbial activity and ryegrass crop in two semiarid soils. Environ Manage 37(5):626–633

    Article  Google Scholar 

  • Muthukrishnan S (2010) Treatment of heavy metals in stormwater runoff using wet pond and wetland mesocosms. In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 11, no 9. Available from: http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1083&context=soilsproceedings. Cited 2014 Apr 12

  • Oberlin A (2002) Pyrocarbons—review. Carbon 40:7–24

    Article  Google Scholar 

  • Odiwe AI, Muoghalu JI (2003) Litterfall dynamics and forest floor litter as influenced by fire in a secondary lowland rain forest in Nigeria. Trop Ecol 44:243–251

    Google Scholar 

  • Ouyang Y (2002) Phytoremediation: modelling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. J Hydrol 266:66–82

    Article  Google Scholar 

  • Özçimen D, Karaosmanoglu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787

    Article  Google Scholar 

  • Ozolinčius R, Armolaitis K, Miškys V, Varnagirytė-Kabašinskienė I (2011) Kompensuojamojo tręšimo miško kuro pelenais rekomendacijos: Antrasis pataisytas leidimas. Lietuvos Respublikos aplinkos ministerija/Lietuvos agrarinių ir miškų mokslo centro Miškų institutas, Girionys, 20 p

    Google Scholar 

  • Pereira P, Úbeda X (2010) Spatial distribution of heavy metals released from ashes after a wildfire. J Environ Eng Landsc Manag 18:13–22

    Article  Google Scholar 

  • Perelman AI (1972) Geochemistry of elements in the zone of hypergenesis. Nedra, Moscow, 288 p

    Google Scholar 

  • Pino JN, Almenar ID, Rodriguez AR, Rodriguez CA, Rivero FJN, Hernandez JLM, Herrera CMA, Garcia JAG (2008) Analysis of the 1:5 soil: water extract in burnt soils to evaluate fire severity. Catena 74:246–255

    Article  Google Scholar 

  • Plekhanova IO (2009) Self-cleaning of cultivated albeluvisols in east part of Moscow under multielemental contamination caused by sewagle sludge application. Soil Manag 6:719–725 (in Russian)

    Google Scholar 

  • Prokushkin AS, Tokareva IV (2007) The influence of heating on organic matter of forest litter and soils under experimental conditions. Soil Chem 40:628–635

    Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011a) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43

    Article  Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011b) Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. In: Eighth international conference “Environmental Engineering”, 19–20 May 2011, Vilnius, Lithuania: selected papers, vol 1, Environmental protection. Technika, Vilnius. ISSN 2029-7106. ISBN 9789955288268, pp 308–312

    Google Scholar 

  • Raclavska H, Raclavsky K, Matysek D (2009) Colour measurement as a proxy method for estimation of changes in phase and chemical composition of fly ash formed by combustion of coal. Fuel 88:2247–2254

    Article  Google Scholar 

  • Radiacinės saugos centro specialistai susitiko su Lietuvos šilumos tiekėjų asociacijos atstovais (2014) Asociacijų informacinė ir naujienų sistema. http://www.vadovauk.lt/messages/view/4018. Accessed 17 Mar 2015

  • Rhoades CC, Meier AJ, Rebertus AJ (2004) Soil properties in fire-consumed log burnout openings in a Missouri oak savanna. For Ecol Manage 192:277–284

    Article  Google Scholar 

  • Roberts AF (1970) A review of kinetic data of the pyrolysis of wood and related substances. Combust Flame 14:261–272

    Article  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  Google Scholar 

  • Saet Е, Revich BА, Janin ЕP, Smirnova RS (1990) Environmental geochemistry. Nedra, Moscow, 335 p

    Google Scholar 

  • Saleh ME, Mahmoud AH, Rashad M (2012) Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: a preliminary study. Adv Environ Bot 6(7):2170–2176

    Google Scholar 

  • Schmidt HP (2012) 55 uses of biochar. Ithaka J 1:286–289, Available at: www.ithaka-journal.net

    Google Scholar 

  • SFSS (2005) Lithuanian statistical yearbook of forestry. State Forest Survey Service, Lithuania

    Google Scholar 

  • Shaoqing C, Shaolin P, Baoming C, Danting C, Juhua C (2010) Effects of fire disturbance on the soil physical and chemical properties and vegetation of Pinus massoniana forest in south subtropical area. Acta Ecol Sin 30:184–189

    Article  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory, 9 p

    Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303

    Article  Google Scholar 

  • Steiner C, Texeira WG, Lehmann J, Zech W (2004) Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earth in Central Amazonia—preliminary results. In: Glaser B, Woods WI (eds) Amazonian dark earths: explorations in time and space. Springer, Berlin, Germany, pp 195–212

    Chapter  Google Scholar 

  • Thomas AD, Walsh RPD, Shakesby RA (1999) Nutrient losses in eroded sediment after fire in eucalyptus and pine forest in the wet Mediterranean environment of northern Portugal. Catena 36:283–302

    Article  Google Scholar 

  • Trapp S, McFarlane JC (1995) Plant contamination: modelling and simulation of organic chemical processes. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Úbeda X, Pereira P, Outeiro L, Martin DA (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad Dev 20:589–608

    Article  Google Scholar 

  • Ulery AL, Graham RC, Amrhein C (1993) Wood-ash composition and soil pH following intense burning. Soil Sci 156:358–364

    Article  Google Scholar 

  • Utilizatsiia zoly kotelnykh, rabotaiushchikh na drevesnom toplive (2007) Programma razvitiia OON (PROON). Globalnyi ekologicheskii fond (GEF). Departament po energoeffektivnosti Gosudarstvennogo Komiteta po Standartizatsii. Sost. Norbert Wildbacher, Minsk, 28 p (in Russian)

    Google Scholar 

  • Valuntienė I, Paškauskaitė Ž (2007) Studijos “Pelenų, susidarančių šilumos tiekimo įmonėse deginant medieną, panaudojimas” ataskaita. UAB “Ekostrategija”. https://docs.google.com/viewer?docex=1&url=http://www.lsta.lt/files/studijos/2007/A-30%20Pelenu%20Pan%20Galimyb%20studija%2020071015.pdf. Accessed 17 Mar 2015

  • Wanthongchai K, Bauhus J, Goldammer JG (2008) Nutrient losses through prescribed burning of aboveground litter and understorey in dry dipterocarp forests of different fire history. Catena 74:321–332

    Article  Google Scholar 

  • Wong CSC, Li XD (2004) Pb contamination and isotopic composition of urban soils in Hong Kong. Sci Total Environ 319:185–195

    Article  Google Scholar 

  • Yoshizawa S, Tanaka S, Ohata M (2007) Proliferation effect of aerobic micro-organisms during composting of rice bran by addition of biomass charcoal. In: Proceedings of the international agrichar conference, Terrigal NSW, Australia, May 2007, p 26

    Google Scholar 

  • Yuzer N, Akoz F, Ozturk LD (2004) Compressive strength–color change relation in mortars at high temperature. Cement Concrete Res 34:1803–1807

    Article  Google Scholar 

  • Žurauskienė R, Naujokaitis AP, Mačiulaitis R, Žurauskas R (2012) Statybinės medžiagos. Technika, Vilnius, 540 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016). Use of Wood Products for Water and Soil Quality Improvement. In: The Sustainable Role of the Tree in Environmental Protection Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-25477-7_6

Download citation

Publish with us

Policies and ethics