Skip to main content

Abstract

This chapter presents the ecotechnological advantages of using trees. In this case, the ecotechnological application of trees is presented as the assessment of the role of trees within their vegetative period in ecosystems using mathematical tools. The chapter describes a method, created by the authors, of dynamic factors to assess biophilicity, bioavailability, bioaccumulation, translocation of chemical elements, and phytoremediation effects. Mathematical models of chemical elements (with a focus on metals) in the transfer system atmosphere–soil–tree–atmosphere–soil provide the possibility of predicting the load of contamination from both stationary and diffuse pollution sources entering the tree environment, the uptake and bioaccumulation of chemical elements in the main morphological parts of a tree, and the potential for using trees in phytotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The plant–soil coefficient expresses the relationship between metal concentrations in ash and the soil. In other words, metal concentration in a plant is recalculated in terms of biomass.

  2. 2.

    Several comparison levels of metal concentration in plants may be distinguished in (1) a direct comparison of metal concentrations in biomass (which would be misleading because the respective metal concentrations in the soil as a source of nutrients for plants are not taken into consideration), (2) bioconcentration (bioaccumulation) coefficients (the effect of higher or lower metal concentrations in soil upon their transfer and accumulation in plants is not taken into account), and (3) dynamic bioaccumulation factors taking into consideration the effect of metal concentrations in the soil of the control (background) and polluted territories on their transfer and accumulation.

  3. 3.

    The definitions and calculations of the dynamic factors are consistent with the data provided in Baltrėnaitė et al. (2012a, b).

  4. 4.

    The data used for dynamic factor calculations was selected from experimentally obtained results by choosing the most pronounced values of metals in soil and plant. Therefore, the metal concentration values from the investigated site that are used in the other chapters may differ.

  5. 5.

    The indices found in the biophilicity sequences correspond to biophilicity factors expressing the relationship between the accumulation of metals in living biomass and metal concentratio n in Earth’s crust with respect to world vegetation or soil of particular territories.

  6. 6.

    According to the requirements of ADMS4, only pollution sources more than 10 m high were studied.

References

  • Allison JD, Allison TL (2005) Partition coefficients for metals in surface water, soil, and waste. Prepared for U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-05, p 74

    Google Scholar 

  • Antoniadis V, Tsadilas CD, Samaras V, Sgouras J (2006) Availability of heavy metals applied to soil through sewage sludge. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, USA

    Google Scholar 

  • Bais HP, Weir TL, Perry LG (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  Google Scholar 

  • Baltrėnaitė E, Butkus D (2006) Heavy metals in Pinus sylvestris L. wood infected with Heterobasidion annosum. In: Abstracts of the 1st scientific meeting of WG1 root to shoot translocation of pollutants and nutrients: abstract book: Santiago de Compostela, Spain, 22–24 June 2006. Instituto de Investigaciones Agrobiologicas de Galicia, Universidade de Santiago de Compostela. Santiago de Compostela: VERTEX Technics, 46

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007a) Accumulation of heavy metals in tree seedlings from soil amended with sewage sludge. Ekologija 53(4):68–76

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007b) Model of heavy metals transport from soil to the plant. In: Abstracts of COST Action 859: phytotechnologies to promote sustainable land use and improve food safety: nutrient biofortification and exclusion of pollutants in food plants, WG1 & WG3 workshop at Sede Boqer Campus, Israel, 23–25 Oct 2007, p 29

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007c) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15(4):200–207

    Google Scholar 

  • Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178

    Article  Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012a) Dynamic factors—a practical tool to evaluate transfer of contaminant from abiotic to biotic environment. In: Abstracts of 6th SETAC world congress. SETAC Europe 22nd annual meeting, 20–24 May 2012. The Society of Environmental Toxicology and Chemistry (SETAC), p 471

    Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012b) Use of dynamic factors to assess metal uptake and transfer in plants—example of trees. Water Air Soil Pollut 223(7):4297–4306

    Article  Google Scholar 

  • Baltrėnas P, Vaitkutė D (2011) Investigation and evaluation of copper and zinc concentration tendencies in Pinus sylvestris L. tree-rings. J Environ Eng Landsc Manag 19(4):278–286

    Article  Google Scholar 

  • Baltrėnas P, Ignatavičius G, Idzelis R, Greičiūtė K (2005a) Aplinkos apsauga kariniuose poligonuose. Technika, Vilnius, 302 p

    Google Scholar 

  • Baltrėnas P, Vaiškūnaitė R, Zagorskis A (2005b) Experimental studies of air flow rate and aerodynamic resistance of biological air purification device that contains activated fir bark charge. In: Proceedings of the 6th international conference environmental engineering: selected papers: 26–27 May 2005, Vilnius, Lithuania, vol 1. Technika, Vilnius. ISBN 9986058503, pp 25–29

    Google Scholar 

  • Biriukova EA (2006) Dinamika fraktsionnogo sostava Cu, Zn, Pb, Cd I pH v rizosfere rastenii Vostochno-Kazakhstanskoi oblasti. Dis. kand. biol. nauk, Semipalatinsk, 169 p (in Russian)

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB Intern., Cambridge, 380 p

    Google Scholar 

  • Buivydaitė V, Motuzas A (2000) Pagrindinės dirvožemio fizikinės savybės. Geologijos pagrindų ir dirvotyros laboratoriniai darbai, pp 44–48

    Google Scholar 

  • Butkus D, Baltrėnaitė E (2007a) Accumulation of heavy metals in tree seedling from soil amended with sewage sludge. Ekologija 53(4):68–76

    Google Scholar 

  • Butkus D, Baltrėnaitė E (2007b) Accumulation of sewage sludge derived heavy metals in three different types of tree seedlings. In: Proceedings of fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs : workshop of WG2 and WG4 and management committee meeting: abstract book 30 May to 1 June 2007, Vilnius-Lithuania/Vilnius Gediminas Technical University. Technika, Vilnius. ISBN 9789955281238, pp 22–23

    Google Scholar 

  • Chamberlain AC (1983) Fallout of lead and uptake by crops. Atmos Environ 17:693–706

    Article  Google Scholar 

  • Cook E, Kairiūkštis L (eds) (1999) Methods of dendrochronology. Applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, Boston, London, 394 p

    Google Scholar 

  • Dobrovolskii VV (2008) Geokhinicheskoe zemledekie. Gumanit. izd. tsentr, VLADOS, Moskva, 207 p (in Russian)

    Google Scholar 

  • Eltrop L, Brown G, Joachim O, Brinkmann K (1991) Lead tolerance of Betula and Salix in the mining area of Mechernich/Germany. Plant Soil 131:275–285

    Article  Google Scholar 

  • Gál J, Hursthhouse A, Tatner P, Steward F, Welton R (2008) Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int 34:821–838

    Article  Google Scholar 

  • Harju L, Saarela KE, Rajander J, Lill JO, Lindroos A, Heselius SJ (2002) Environmental monitoring of trace elements in bark of Scots pine by thick—target PIXE. Nucl Instrum Methods Phys Res 189:163–167

    Article  Google Scholar 

  • Hung H, Mackay DA (1997) A novel and simple model of uptake of organic chemical by vegetation from air and soil. Chemosphere 35:959–977

    Article  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defence of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–343

    Article  Google Scholar 

  • Jose L, Pillai VNR (1996) Transition metal complexes of polymeric amino ligands derived from thriethyleneglycol dimethacryle crosslinked polyacrylamides. J Appl Polym Sci 60:1855–1865

    Article  Google Scholar 

  • Kabata Pendias A (2010) Trace elements in soils and plants. CRC Press/Taylor and Francis, Boca Raton, FL, 520 p

    Book  Google Scholar 

  • Kabata Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL, 413 p. ISBN 0849315751

    Google Scholar 

  • Kahle H (1993) Response of roots trees to heavy metals. Environ Exp Bot 33(1):99–119

    Article  Google Scholar 

  • Katinas V, Kadūnas V, Radzevičius A, Zinkutė R (2002) Processes of chemical element dispersion and redistribution in environment using wastewater sludge for recultivation of woodcuttings areas. Geologija 38:3–11

    Google Scholar 

  • Kovalevsky AL (1987) Biogeochemical exploration for mineral deposits. VNU Science Press BV, Utrecht, 224 p

    Google Scholar 

  • Kupčinskienė E (2011) Aplinkos fitoindikacija [Environmental phytoindication]. Kaunas, 752 p (in Lithuanian)

    Google Scholar 

  • Laitakari E (1934) Koivun juuristo (Summary: The root system of birch, Betula verrucosa and odorata). Acta Forest Fenn 40:853–901

    Google Scholar 

  • Lietuvninkas A (2012) Aplinkos geochemija [Environmental geochemistry]. Technika, Vilnius, 312 p (in Lithuanian)

    Book  Google Scholar 

  • Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkos stebėjimo naujovės. Bioindikatoriai ir biomonitoriai: apibrėžtys, strategijos ir taikymas [Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239 (in Lithuanian)

    Article  Google Scholar 

  • Mingorance MD, Valdes B, Rossini OS (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    Article  Google Scholar 

  • Navasaitis M (2008) Dendrologija. Margi raštai, Vilnius, 856 p

    Google Scholar 

  • Neverova OA, Iagodkina EA (2010) Ustoichivost drevesnykh rastenii v usloviiakh gorodskoi sredy. http://ecotext.ru/58.html (in Russian)

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    Article  Google Scholar 

  • Prasad MNV (2006) Plants that accumulate and/or exclude toxic trace elements play an important role in phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, Biotechnology and Bioremediation. Taylor and Francis, USA

    Google Scholar 

  • Pulford ID, Dickinson NM (2006) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, Biotechnology and Bioremediation. Taylor and Francis, USA

    Google Scholar 

  • Pundytė N, Baltrėnaitė E (2011) Tree bark ability to accomulate metals. In: Aplinkos apsaugos inžinerija: 14-osios Lietuvos jaunųjų mokslininkų konferencijos “Mokslas—Lietuvos ateitis” straipsnių rinkinys (2011 m. balandžio 14 d.). Technika, Vilnius. ISSN 2029-5456. ISBN 9789955289562, pp 218–222

    Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011a) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43

    Article  Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011b) Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. In: Eighth international conference “Environmental Engineering”, 19–20 May 2011, Vilnius, Lithuania: selected papers, vol 1, Environmental protection. Technika, Vilnius. ISSN 2029-7106. ISBN 9789955288268, pp 308–312

    Google Scholar 

  • Robinson BH, Fernández JE, Madejón P, Marañón T, Murillo JM, Green SR, Clothier BE (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249(1):117–125

    Article  Google Scholar 

  • Stravinskienė V (2002) Klimato veiksnių ir antropogeninių aplinkos pokyčių dendrochronologinė indikacija. Lututė, Kaunas, 174 p

    Google Scholar 

  • Stravinskienė V (2010) Medžių būklės stebėsena ir vertinimas Kauno miesto aplinkoje [Monitoring and evaluation of tree condition in the vicinity of Kaunas City]. J Environ Eng Landsc Manag 18(3):217–225

    Article  Google Scholar 

  • Terry N, Banuelos G (1999) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL

    Book  Google Scholar 

  • Tsiros IX, Ambrose RB, Chronopoulu-Sereli A (1999) Air-vegetation-soil partitioning of toxic chemicals in environmental simulation modelling. Global Nest Int J 1(3):177–184

    Google Scholar 

  • Turner A, Mawji E (2005) Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability. Environ Pollut 135(2):235–244

    Article  Google Scholar 

  • Vaitiekūnas P, Špakauskas V (2003) Šilumos ir masės pernašos procesų aplinkoje modeliavimo principai. Technika, Vilnius, 194 p

    Google Scholar 

  • Vaitkutė D, Baltrėnaitė E, Booth C, Fullen MA (2010) Does sewage sludge amendment to soil enhance the development of Silver birch and Scots pine? Hung Geogr Bull 59(4):393–410

    Google Scholar 

  • Verbyla V (1990) Miškininko žinynas. Mokslas, Vilnius, 480 p

    Google Scholar 

  • Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy metal uptake by plant roots. Environ Modell Assess 11:387–394

    Article  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  Google Scholar 

  • Zimmermann MH, Milburn JA (1982) Transport and storage of water. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B. Springer, Berlin, pp 135–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016). The Role of Trees in Ecotechnologies. In: The Sustainable Role of the Tree in Environmental Protection Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-25477-7_5

Download citation

Publish with us

Policies and ethics