Skip to main content

Biogeochemical Aspect of Metal Uptake by Trees

  • Chapter
  • First Online:
  • 415 Accesses

Abstract

The This chapter discusses the access of metals to ecosystems and mechanisms for entering trees. The transfer of metals from soil (also owing to an aerogenic load of metals) to trees should be steady; however, external or internal factors determine the investigated system. Environmental pollution, in terms of trees, acts as a stressor as it is classified as an external, ecological, and abiotic factor. Tree diseases are a no less important example of biotic factors and are among the consequences of climate change, attracting attention to the sustainability of forest management. This chapter deals with examples of abiotic and biotic factors, discusses the biological uptake of metals in wood, and examines the differences and peculiarities of metal bioavailability, bioaccumulation, and biophilicity in trees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Sabour MF (1991) Nickel accumulation parameters, coefficients of transfer, tolerance index and nutrient uptake by red clover grown on nickel polluted soils. Int J Stud 37:25–34

    Google Scholar 

  • Afanaseva NB, Berezina NA (2011) Vvedenie v ekologiiu rastenii: uchebnoe posobie. Izd-vo Mosk. Un-ta, Moskva, 800 p (in Russian)

    Google Scholar 

  • Almås ÅR, Singh BR (2001) Plant uptake of cadmium-109 and zinc-65 at different temperature and organic mater levels. J Environ Qual 30:869–877

    Article  Google Scholar 

  • Almås ÅR, McBride MB, Singh BR (2000) Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Sci 163:250–259

    Article  Google Scholar 

  • Asiegbu FO, Daniel G, Johansson M (1994) Defence related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref. Physiol Mol Plant Pathol 45:1–19

    Article  Google Scholar 

  • Ayeni OO, Ndakidemi PA, Snyman RG, Odendaal JP (2010) Chemical, biological and physiological indicators of metal pollution in wetlands. Sci Res Essays 5(15):1938–1949

    Google Scholar 

  • Baes CF III, McLaughlin SB (1984) Trace elements in tree rings: evidence of recent and historical air pollution. Science 224:494–497

    Article  Google Scholar 

  • Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178

    Article  Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012a) Dynamic factors—a practical tool to evaluate transfer of contaminant from abiotic to biotic environment. In: Abstracts of 6th SETAC world congress. SETAC Europe 22nd annual meeting, 20–24 May 2012. The Society of Environmental Toxicology and Chemistry (SETAC), p 471

    Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012b) Use of dynamic factors to assess metal uptake and transfer in plants—example of trees. Water Air Soil Pollut 223(7):4297–4306

    Article  Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Butkus D, Lietuvninkas A (2013a) Dynamic factors—a new biogeochemical tool to estimate chemical elements uptake by plants. In: Abstracts of the 12th international conference on the biogeochemistry of trace elements (ICOBTE), 16–20 June 2013, Athens, Georgia: conference schedule with abstracts. The University of Georgia, Athens, 2013, p 1

    Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Butkus D, Lietuvninkas A (2013b) Second-level factors as quantitative process evaluation method for essential and detrimental element uptake and exclusion. In: Abstracts of 4th annual conference “Essential and Detrimental Trace Elements entering the Food Chain via Plants” (All WGs), 9–13 June 2013. Aas: Norwegian University of Life Sciences, 2013, p 53

    Google Scholar 

  • Baltrėnas P, Ignatavičius G, Idzelis R, Greičiūtė K (2005a) Aplinkos apsauga kariniuose poligonuose. Technika, Vilnius, 302 p

    Google Scholar 

  • Baltrėnas P, Vaiškūnaitė R, Zagorskis A (2005b) Experimental studies of air flow rate and aerodynamic resistance of biological air purification device that contains activated fir bark charge. In: Proceedings of the 6th international conference environmental engineering: selected papers: 26–27 May 2005, Vilnius, Lithuania, vol 1. Technika, Vilnius. ISBN 9986058503, pp 25–29

    Google Scholar 

  • Bargagli R (1990) Assessment of metal air pollution by epyphytic lichens: the incidence of crustal materials and of the possible uptake from substrate barks. Stud Geobot 10:97–103

    Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoos of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  Google Scholar 

  • Berg T (1993) Atmospheric trace element deposition in Norway studied by ICP-MS, Dr. Scien. Thesis. University of Trondheim, Norway

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons Inc., New York, 314 p

    Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1992) The cellular basis of plant-fungus interchange in mycorrhizal interactions. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 65–101

    Google Scholar 

  • Borusas S, Pranaitis P, Šlapakauskas V (1990) Augalų fiziologija ir mikrobiologijos pagrindai. Vilnius, 187 p

    Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265

    Article  Google Scholar 

  • Bozkurt MA (2003) The effect of sewage sludge applications on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turk J Agric For 27:285–292

    Google Scholar 

  • Cramer RA, Lawrence CB (2004) Identification of Alternaria brassicicola genes expresses in planta during pathogenesis of Arabidopsis thaliana. Fungal Genet Biol 41:115–126

    Article  Google Scholar 

  • Danusiavichius’ius (1994) Vzaimootnosheniia kornevykh sistem sosny I berezy v smeshannykh kulturakh. Trudy Litovskogo nauchno-issledovatelskogo instituta lesnogo khoziaistva XXIV:95–119 (in Russian)

    Google Scholar 

  • Dmuchowski W, Bytnerowicz A (1995) Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Pollut 87:87–104

    Article  Google Scholar 

  • Durzan DJ, Steward FC (1983) Nitrogen metabolism. In: Steward FC, Bidwell RGS (eds) Plant physiology: a treatise, vol VIII. Academic Press, New York, pp 55–65

    Google Scholar 

  • Ericson A (1979) Effects of fertilization and irrigation on the seasonal changes of carbohydrate reserves in different age-classes of needle on 20-year-old pine trees (Pinus sylvestris). Physiol Planta 45:270–280

    Article  Google Scholar 

  • Faust M (1989) Physiology of temperate zone fruit trees. Wiley, New York

    Google Scholar 

  • Finger-Teixeira A, Ferrarese ML, Soares AR, da Silva D, Ferrarese-Filho O (2010) Cadmium-induced lignification restricts soybean root growth. Ecotoxicol Environ Saf 73(8):1959–1964

    Article  Google Scholar 

  • Fodor F (2002) Physiological response of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Netherlands, pp 149–177

    Chapter  Google Scholar 

  • Franza T, Mahé B, Expert D (2005) Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55:261–275

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  Google Scholar 

  • Gramss G (2010) The universe of basidiomycetous ground fungi. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, pp 218–229

    Google Scholar 

  • Gricius A, Urbonas V, Kutorga E, Matelis A (1999) Succession of fungi on dead timber of various trees. Bot Lituan 5(6):60–77

    Google Scholar 

  • Gupta RK, van den Elshout S, Abrol IP (1987) Effect of pH on zinc adsorption-precipitation reactions in an alkali soil. Soil Sci 143:198–204

    Article  Google Scholar 

  • Hahne HCH, Kroontje W (1973) Significance of pH and chloride concentration on behaviour of heavy metal pollutants: mercury (II), cadmium (II), zinc (II) and lead (II). J Environ Qual 2:444–450

    Article  Google Scholar 

  • Heckman JR, Strick JE (1996) Teaching plant-soil relationships with colour images of rhizosphere pH. J Nat Resour Life Sci Educ 25:13–17

    Google Scholar 

  • Heinrich D, Hergt M (2001) Ekologijos atlasas. Alma Littera, Vilnius, 280 p

    Google Scholar 

  • Holm PE, Christensen TH, Tjell JC, McGrath SP (1995) Speciation of cadmium and zinc with application to soil solutions. J Environ Qual 24:183–190

    Article  Google Scholar 

  • Hrdlicka P, Kula E (1998) Element content in leaves of birch (Betula verrucosa Ehrh.) in an air polluted area. Tree 13:68–73

    Google Scholar 

  • Huang BR, Taylor HM, McMichael BL (1991) Behavior of lateral roots in winter wheat as affected by temperature. Environ Exp Bot 31:187–192

    Article  Google Scholar 

  • Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484

    Article  Google Scholar 

  • Jantschje G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  Google Scholar 

  • Kabata Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton, FL. ISBN 978-1-4200-9368-1

    Google Scholar 

  • Kabata Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton, FL, 315 p

    Google Scholar 

  • Kabata Pendias A, Pendias H (1993) Trace elements in soil and plants. PWN, Warsaw

    Google Scholar 

  • Kadūnas V (1998) Technogeninė geochemija. Geologijos institutas, Vilnius, 145 p

    Google Scholar 

  • Kadūnas V, Radzevičius A (2001) Sunkiųjų metalų migracinės formos Panevėžio miesto įmonių technogeniškai užterštame grunte. Geologija 35:23–28

    Google Scholar 

  • Katinas V, Kadūnas V, Radzevičius A, Zinkutė R (2002) Processes of chemical element dispersion and redistribution in environment using wastewater sludge for recultivation of woodcuttings areas. Geologija 38:3–11

    Google Scholar 

  • Kavvadias VA, Miller HG (1999) Manganese and calcium nutrition of Pinus sylvestris and Pinus nigra from two different origins. I. Manganese. Forestry 72:35–45

    Article  Google Scholar 

  • Khan AG (2001) Relationships between chromium biomagnifications ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–423

    Article  Google Scholar 

  • Kopponen P, Utriainen M, Lukkari K, Suntioinen S, Karenlampi L, Karenlampi S (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97

    Article  Google Scholar 

  • Korentejar L (1991) A review of the agricultural use of sewage sludge: benefits and potential hazards. Water SA 17(3):189–196

    Google Scholar 

  • Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN (1995) Heavy metals in birch leaves around a nickel-copper smelter at Monchegorsk, North Western Russia. Environ Pollut 90:291–299

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic, California, 411 p

    Google Scholar 

  • Kupčinskienė E (2011) Aplinkos fitoindikacija [Environmental phytoindication]. Kaunas, 752 p (in Lithuanian)

    Google Scholar 

  • Larsson C, Helmisaari HS (1998) Accumulation of elements in the annual rings of Scots pine trees in the vicinity of a copper–nickel smelter measured by scanning EDXRF. X-Ray Spectrom 27:133–139

    Article  Google Scholar 

  • Latimer SS, Devall MS, Thomas C, Ellgaard EG, Jumar SD, Thien LB (1996) Dendrochronology and heavy metal deposition in tree rings of bald cypress. J Environ Qual 25:1411–1499

    Article  Google Scholar 

  • Lietuvninkas A (2002a) Anthropogenic geochemical anomalies and environmental protection. Publishing House of Scientific and Technological Literature, Tomsk, 290 p (in Russian)

    Google Scholar 

  • Lietuvninkas AI (2002b) Antropogennye geokhimicheskie anomalii i prirodnaia sreda. Izd-vo NTL, Tomsk, 290 p (in Russian)

    Google Scholar 

  • Lietuvninkas A (2012) Aplinkos geochemija [Environmental geochemistry]. Technika, Vilnius, 312 p (in Lithuanian)

    Book  Google Scholar 

  • Lipetz J, Garro AJ (1965) Ionic effects on lignification and peroxidase in tissue cultures. J Cell Biol 25(1):109–116

    Article  Google Scholar 

  • Loppi S, Pirintsos SA (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ Pollut 121:327–332

    Article  Google Scholar 

  • Lund W (1990) Speciation analysis—why and how? Fresenius J Anal Chem 337:557–564

    Article  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC/Lewis Publishers, Boca Raton, FL, pp 235–250

    Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic Press, San Diego, CA, 585 p

    Google Scholar 

  • Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkos stebėjimo naujovės. Bioindikatoriai ir biomonitoriai: apibrėžtys, strategijos ir taikymas [Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239 (in Lithuanian)

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, 889 p

    Google Scholar 

  • Mattigod SV, Sposito G (1977) Estimated association constants for some complexes of trace metals with inorganic ligands. Soil Sci Soc Am J 41:1092–1097

    Article  Google Scholar 

  • Mažvila J (2001) Sunkieji metalai Lietuvos dirvožemiuose ir augaluose. LŽI, Kaunas, 343 p

    Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soil. Adv Soil Sci 10:1–56

    Article  Google Scholar 

  • McBride MB, Blasiak JJ (1979) Zinc and copper solubility as a function of pH in an acid soil. Soil Sci Soc Am J 43:866–870

    Article  Google Scholar 

  • McBride MB, Richards BK, Steenhuis T, Russo JJ, Sauve S (1997) Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci 162:487–500

    Article  Google Scholar 

  • McLaughlin MJ, Smolders E, Merckx R (1998) Soil-root interface: physicochemical processes. In: Juang PM et al (ed) Soil chemistry and ecosystem health. SSSA. Spec. Publ. 52. SSSA, Madison, WL, pp 233–277

    Google Scholar 

  • Merian E (ed) (1991) Metals and their compounds in the environment. Occurrence, analysis and biological relevance. VCH, Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Mikac N, Cosovic B, Ahel M, Andreis S, Toncic Z (1998) Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia). Water Sci Technol 37(8):37–44

    Article  Google Scholar 

  • Morgan TD, Baker P, Kramer KJ, Basibuyuk HH, Quicke DLJ (2003) Meals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J Stored Prod Res 39:65–75

    Article  Google Scholar 

  • Mulgrew A, Williams P (2002) Biomontoring of air quality using plants. Air Hygiene Report, No. 10, II Heavy metals. Available at: www.umweltbundesamt.de/whocc/AHR10/II-HM-4.htm

  • Narwal RP, Singh BR (1998) Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut 103:405–421

    Article  Google Scholar 

  • Navas A, Machin J (2002) Spatial distribution of heavy metals and arsenic in soils of Aragon (North Spain): controlling factors and environmental implications. Appl Geochem 17:961–973

    Article  Google Scholar 

  • Neal RH, Sposito G (1986) Effects of soluble organic matter and sewage sludge amendments on cadmium sorption by soils at low cadmium concentrations. Soil Sci 142:164–172

    Article  Google Scholar 

  • Nelson RS, Citovsky V (2005) Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiol 138:1809–1814

    Article  Google Scholar 

  • Nieminen TM (2005) Response of Scots pine (Pinus sylvestris L.) to a long-term Ni and Cu exposure. Academic Dissertation, Finnish Forest Research Institute. Research paper 942:63

    Google Scholar 

  • Nissen LR, Lepp NW (1997) Baseline concentration of copper and zinc in shoot tissues of a range of Salix species. Biomass Bioenergy 12:115–120

    Article  Google Scholar 

  • Noland TL, Kozlowski TT (1979) Effect of SO2 on stomatal aperture and sulfur uptake of woody angiosperm seedlings. Can J For Res 9:57–62

    Article  Google Scholar 

  • Noret NP, Meerts R, Tolrà C, Poschenrieder C, Barceló J, Escarre J (2005) Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–772

    Article  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to atmosphere. Nature 279:409–411

    Article  Google Scholar 

  • Nye PH, Tinker PB (1997) Solute movement in the soil-root system. Blackwell Scientific Publications, Oxford, UK, 352 p

    Google Scholar 

  • Ozolinčius R (2004) Lietuvos autochtoninės dendrofloros vertinimas pagal Elenbergo indikacinę skalę. Ekologija 4:13–22

    Google Scholar 

  • Pinamonti F, Stringari G, Gasperi F, Zorzi G (1997) The use of compost: its effects on heavy metal levels in soil and plants. Resour Conserv Recycl 21:129–143

    Article  Google Scholar 

  • Planquard P, Bonin G, Prone A, Massiani C (1999) Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts: application to low metal loadings. Sci Total Environ 241:161–179

    Article  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    Article  Google Scholar 

  • Prasad MNV, Strzałka S (2000) Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants, from molecules to ecosystems. Springer, Berlin, pp 117–138

    Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011a) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43

    Article  Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011b) Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. In: Eighth international conference “Environmental Engineering”, 19–20 May 2011, Vilnius, Lithuania: selected papers, vol 1, Environmental protection. Technika, Vilnius. ISSN 2029-7106. ISBN 9789955288268, pp 308–312

    Google Scholar 

  • Punshon T, Dickinson NM (1997) Acclimation of Salix to metal stress. New Phytol 137:303–314

    Article  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  Google Scholar 

  • Richards BN (1987) The microbiology of terrestrial ecosystems. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Rizzio E, Giaveri A, Arginelli D, Gini L, Profumo A, Gallorini M (1999) Trace elements total contents and particle sizes distribution in the air particulate matter of a rural-residential area in the North Italy investigated by instrumental neutron activation analysis. Sci Total Environ 226:47–56

    Article  Google Scholar 

  • Romero-Puertas M, Perazzolli M, Zago ED, Delledoone M (2004) Nitric oxide signalling function in plant pathogen interactions. Cell Microbiol 6:795–803

    Article  Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  Google Scholar 

  • Saet Е, Revich BА, Janin ЕP, Smirnova RS (1990) Environmental geochemistry. Nedra, Moscow, 335 p

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Google Scholar 

  • Sauve S, McBride MB, Norwell WA, Hendershot H (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100:1–17

    Article  Google Scholar 

  • Schroeder WH, Dobson M, Kane DM, Johnson ND (1987) Toxic trace metals associated with airborne particulate matter: a review. JAPCA 37:1267–1285

    Article  Google Scholar 

  • Schulze ED, Beck E, Muller-Hohenstein K (2005) Plant ecology. Springer, New York

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metals-induces oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Schwedt G (1997) The essential guide to analytical chemistry. John Wiley and Sons, Germany, 236 p

    Google Scholar 

  • Shaw PJA, McLeod AR (1995) The effects of SO2 and O3 on the foliar nutrition of Scots pine, Norway spruce and Sitka spruce in the Liphook open-air fumigation experiment. Plant Cell Environ 18:237–245

    Article  Google Scholar 

  • Shomar BH, Müller G, Yahya A (2005) Geochemical characterization of soil and water from a wastewater treatment plant in Gaza. Soil Sediment Contam 14:309–327

    Article  Google Scholar 

  • Sims JL, Patrick WH (1978) The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Sci Soc Am Proc 42:258–261

    Article  Google Scholar 

  • Singh MV, Abrol IP (1985) Solubility and adsorption of zinc in a sodic soil. Soil Sci 140:406–411

    Article  Google Scholar 

  • Singh BR, Subramaniam V (1997) Phosphorus supplying capacity of heavily fertilized soils: II. Dry matter yield of successive crops and phosphorus uptake at different temperatures. Nutr Cycl Agroecosyst 47:123–134

    Article  Google Scholar 

  • Smucker AJ, Aiken RM (1992) Dynamic root response to water deficits. Soil Sci 154:281–289

    Article  Google Scholar 

  • Sommers LE, Nelson DW, Yost KJ (1976) Variables nature of chemical composition of sewage sludges. J Environ Qual 5:303–306

    Article  Google Scholar 

  • Steinnes E (1992) Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 25(5):735–752

    Article  Google Scholar 

  • Stravinskienė V (2002) Klimato veiksnių ir antropogeninių aplinkos pokyčių dendrochronologinė indikacija. Lututė, Kaunas, 174 p

    Google Scholar 

  • Tang DJ, Li XJ, He YQ (2005) The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv campestris. Mol Plant Microbe Interact 18:652–658

    Article  Google Scholar 

  • Turner AP, Dickinson NM (1993) Survival of Acer pseudoplanatus L. (sycamore) seedlings on metalliferous soils. New Phytol 123:509–521

    Article  Google Scholar 

  • Turvey ND, Carlyle C, Downes GM (1992) Effects of micronutrients on the growth form of two families of Pinus radiata (D. Don) seedlings. Plant Soil 139:59–65

    Article  Google Scholar 

  • Tyler LD, McBride MB (1982) Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci 134:198–205

    Article  Google Scholar 

  • Usman ARA, Kuzyakov Y, Stahr K (2005) Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil. Soil Sediment Contam 14:329–344

    Article  Google Scholar 

  • Van Assche CH (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  Google Scholar 

  • VPIRG (Vermont Public Interest Research Group) (1999) On the ground: the spreading of toxic sludge in Vermont, 68 p

    Google Scholar 

  • Wagner G (1993) Large-scale screening of heavy metals burdens in higher plants. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 425–434

    Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  Google Scholar 

  • Woodward J, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum. Biology, ecology, impact, and control. CAB International, Wallingford, UK

    Google Scholar 

  • Zelawski W (1967) Gaseous exchange and water balance in needles. In: Bialobok S, Zelawski W (eds) Outline of physiology of scots pine. Foreign Scientific Publications, Dept. of National Center for Scientific, Technical and Economic Information, Warsaw, Poland, pp 31–96

    Google Scholar 

  • Zyrin NG, Kaplunova EV, Serdiukova AV (1985) Normirovanie soderzhaniia tiazhelykh metallov v sisteme pochva-rastenie. Khimiia v sel khoz-ve 6:45–48 (in Russian)

    Google Scholar 

  • Cawse PA (1982) Inorganic particulate matter in the atmosphere, environmental chemistry. R Soc Chem 2:1–68

    Google Scholar 

  • Pinamonti F (1998) Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr Cycl Agroecosyst 51:239–248

    Article  Google Scholar 

  • Brigatti MF, Campana G, Medici L, Poppi L (1996) The influence of Layer charge on Zn2+ and Pb2+ sorption by smectites. Clay Min 31:477–483

    Article  Google Scholar 

  • Shigo A (1996) Troubles in rhizosphere. Tree Care Industry 7(10):1–9

    Google Scholar 

  • Barber SA, Martin JK (1976) The release of organic substances by cereal roots in soil. New Phytol 76:69–80

    Article  Google Scholar 

  • Goldbold DL (1991) Cadmium uptake in Norway spruce. Tree Physiol 9:349–357

    Article  Google Scholar 

  • van den Driessche R (1974) Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev 40:347–394

    Article  Google Scholar 

  • Helmisaazi H-S (1992) Nutrient retranslocation within foliage of Pinus sylvester's. Tree Physiol 10:45–58

    Article  Google Scholar 

  • Russell EW (2001) Soil conditions and plant growth, 10th edn. Williams Clowes & Sons, London, UK

    Google Scholar 

  • Laitakarai E (1927) The root system of pine (Pinus sylvester's): a morphological investigation. Acta Forestales Fennica 33:306–380

    Google Scholar 

  • Eeva T, Lehikoinen E, Ronka M (1998) Air pollution fades the plumage of the Great Tit. Funct Ecol 12:607–612

    Article  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross-talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–424

    Article  Google Scholar 

  • Hill LJ (2002) Branching out into biogeochemical surveys: a guide to vegetation sampling. In: Roach IE (ed) Regolith and Landscapes in Eastern Australia. CRC Leme, Perth, pp 50–53

    Google Scholar 

  • Alloway BJ (ed) (1995) Heavy metals in soils, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Hartley RD, Ford CW (1989) Phenolic constituents of plant cell walls and wall biodegradability. In: Lewi's NG, Paice WG (eds) Plant cell wall polymers: biogenesis and biodegradation. American Chemical Society, Washington, DC, pp 138–145

    Google Scholar 

  • Johansson M, Theander O (1974) Changes of sapwood of roots of Norway spruce, attacked by Fomes annosus. Part I. Physiol Plant 30:218–225

    Article  Google Scholar 

  • Mader SS (1998) Biology, G/E. McGraw-Hill, New York, 572 p

    Google Scholar 

  • Gasco G, Martinez-Inigo MJ, Lobo MC (2004) Soil organic matter transformation after a sewage sludge application. Elect J Environ Agric Food Chem 3(4):716–722

    Google Scholar 

  • Heinrich, D., Hergt, M. 2001. Ekologijos atlasas Vilnius: Alma Littera, 280 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016). Biogeochemical Aspect of Metal Uptake by Trees. In: The Sustainable Role of the Tree in Environmental Protection Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-25477-7_3

Download citation

Publish with us

Policies and ethics