Skip to main content

Singular Spectrum Analysis (SSA)

  • Chapter
  • First Online:
Digital Signal Processing and Spectral Analysis for Scientists

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter is devoted to an approach of extracting periodic or quasi-periodic components from a random signal. Singular Spectrum Analysis (SSA) is not, in a strict sense, a simple spectral method, since it is aimed at representing the signal as a linear combination of elementary variability modes that are not necessarily harmonic components, but can exhibit amplitude and frequency modulations in time, and are data-adaptive, i.e., modeled on the data. It does not provide a stationary spectral estimate but can separate auto-coherent from random features. SSA is a non-parametric method, since it does not assume any specific model for the generation of the signal. It can also be viewed as a powerful de-noising technique; finally, it can be exploited as a tool for filling gaps in data records that is soundly based from a theoretical point of view. Examples the real-world applications of SSA are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that in linear algebra, a Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant, i.e., all elements in a diagonal are equal.

  2. 2.

    We must underline that SVD is different from the so-called eigen-decomposition used to perform diagonalization of a square matrix. Focussing on real matrices, matrix diagonalization is the process of taking a square matrix and converting it into a special type of matrix—a so-called diagonal matrix—that shares the same fundamental properties of the underlying matrix. Matrix diagonalization is equivalent to transforming the underlying system of equations into a special set of coordinate axes in which the matrix takes this diagonal form. Diagonalizing a matrix is also equivalent to finding the matrix’s eigenvalues, which turn out to be precisely the entries of the diagonalized matrix. Similarly, the eigenvectors make up the new set of axes corresponding to the diagonal matrix. The relationship between a diagonalized matrix, eigenvalues, and eigenvectors follows from an equation according to which a square matrix \(\varvec{R}\) can be decomposed into the form \(\varvec{R}= \varvec{A}\varvec{\varLambda }\varvec{A}^{-1}\), where \(\varvec{A}\) is a matrix composed of the eigenvectors of \(\varvec{R}\) arranged by columns, \(\varvec{\varLambda }\) is the diagonal matrix constructed from the corresponding eigenvalues, and \(\varvec{A}^{-1}\) is the matrix inverse of \(\varvec{A}\). It is obvious that if a square matrix \(\varvec{R}\) has a matrix of eigenvectors \(\varvec{A}\) that is not invertible, then \(\varvec{R}\) does not have an eigen-decomposition. However, in the case of the lag-covariance matrix, the eigenvectors are orthogonal to one another. The matrix \(\varvec{A}\) having the eigenvectors of \(\varvec{R}\) as its columns is thus an orthogonal matrix, so that its inverse is equal to its transpose: \(\varvec{A}^{-1}=\varvec{A}^T\). Then \(\varvec{R}\) can be written using a so-called SVD of the form \(\varvec{R}= \varvec{A}\varvec{\varLambda }\varvec{A}^{T}\).

    More generally, in linear algebra the SVD is a factorization of a real or complex matrix, which is not necessarily square—it can also be rectangular. Even if linear algebra is beyond the scope of the book, we may mention that some key differences between SVD and eigen-decomposition are the following:

    • the vectors forming the columns of the eigen-decomposition matrix \(\varvec{A}\) are not necessarily orthogonal. On the other hand, the vectors that in the SVD factorization play a similar role are orthonormal; therefore the corresponding matrices—two different matrices—involved in SVD are orthogonal;

    • these matrices involved in SVD are not necessarily the inverse of one another. They are usually not related to each other at all. In the eigen-decomposition, the matrices involved are inverses of each other, i.e., they are \(\varvec{A}\) and \(\varvec{A}^{-1}\);

    • in the SVD, the entries in the diagonal matrix \(\varvec{\varLambda }\) are all real and non-negative. In the eigen-decomposition, the entries of the corresponding matrix can be any complex number—negative, positive, imaginary, whatever;

    • the SVD always exists for any sort of rectangular or square matrix, whereas the eigen-decomposition only exists for square matrices, and even among square matrices sometimes it doesn’t exist.

  3. 3.

    The reference standard for the Oxygen isotopic composition in carbonates is the PDB standard, which is based on the CO\({_2}\) produced from Cretaceous belemnites of Pee Dee formation in South Carolina (Faure, G: Principles of isotope geology, Second Edition, John Wiley and Sons (1986)).

  4. 4.

    Siltation, in general, is the pollution of water by fine particulate terrestrial clastic material, with a particle size dominated by silt or clay. Here it refers to the increased accumulation of fine sediments on the river bottom.

  5. 5.

    Swift is a NASA mission with international participation. Within seconds of detecting a burst, Swift relays its location to ground stations, allowing both ground-based and space-based telescopes around the world the opportunity to observe the burst’s afterglow. Swift is part of NASA’s medium explorer (MIDEX) program and was launched into a low-Earth orbit on a Delta 7320 rocket on November 20, 2004.

References

  • Aguiar-Conraria, L., Soares, M.J.: Business cycle synchronization and the Euro: a wavelet analysis. J. Macroecon. 33, 477–489 (2011)

    Article  Google Scholar 

  • Alessio, S., Vivaldo, G., Taricco, C., Ghil, M.: Natural variability and anthropogenic effects in a central mediterranean core. Clim. Past 8, 831–839 (2012)

    Article  Google Scholar 

  • Allen, M.R.: Interactions between the atmosphere and the oceans on time-scales of weeks to years. Ph.D. Dissertation, Clarendon Laboratory, Oxford (1992)

    Google Scholar 

  • Allen, M.R., Robertson, A.W.: Distinguishing modulated oscillations from coloured noise in multivariate datasets. Clim. Dyn. 12, 775–784 (1996)

    Google Scholar 

  • Allen, M.R., Smith, L.A.: Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J. Climate 9, 3373–3404 (1996)

    Article  Google Scholar 

  • Allen, M.R., Smith, L.A.: Optimal filtering in singular spectrum analysis. Phys. Lett. A 234(6), 419–428 (1997)

    Google Scholar 

  • Allen, M.R., Read, P., Smith, L.A.: Temperature oscillations. Nature 359, 679 (1992)

    Google Scholar 

  • Bonino, G., Cini Castagnoli, G., Callegari, E., Zhu, G.M.: Radiometric and tephroanalysis dating of recent Ionian Sea cores. Nuovo Cimento C 16, 155–161 (1993)

    Google Scholar 

  • Brawanski, A., Faltermeier, R., Rothoerl, R.D., Woertgen, C.: Comparison of near-infrared spectroscopy and tissue Po\(_2\) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J. Cerebr. Blood F. Met. 22(5), 605–611 (2002)

    Article  Google Scholar 

  • Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D 20, 217–236 (1986a)

    Google Scholar 

  • Broomhead, D.S., King, G.P.: On the qualitative analysis of experimental dynamical systems. In: Sarkar, S. (ed.) Nonlinear Phenomena and Chaos. Adam Hilger, Bristol (1986b)

    Google Scholar 

  • Colebrook, J.M.: Continuous plankton records, zooplankton and environment, North-East Atlantic and North Sea, 1948–1975. Oceanol. Acta 1, 9–23 (1978)

    Google Scholar 

  • de Carvalho, M., Rodrigues, P.C., Rua, A.: Tracking the US business cycle with a singular spectrum analysis. Econ. Lett. 114(1), 32–35 (2012)

    Article  Google Scholar 

  • Dettinger, M.D., Ghil, M., Strong, C.M., Weibel, W., Yiou, P.: Software expedites singular-spectrum analysis of noisy time series. Eos, Trans. American Geophysical Union 76(2), 12, 14, 21 (1995)

    Google Scholar 

  • De Putter, T., Loutre, M.F., Wansard, G.: Decadal periodicities of Nile River historical discharge (A.D. 622–1470) and climatic implications. Geophys. Res. Lett. 25, 3193–3196 (1998)

    Article  Google Scholar 

  • Feliks, Y., Groth, A., Robertson, A., Ghil, M.: Oscillatory climate modes in the Indian monsoon, North Atlantic and Tropical Pacific. J. Climate 26, 9528–9544 (2013)

    Article  Google Scholar 

  • Freas, W.A., Sieurin, E.: A nonparametric calibration procedure for multi-source urban air pollution dispersion models. In: Fifth Conference on Probability and Statistics in Atmospheric Sciences. American Meteorological Society (AMS), Las Vegas (1977)

    Google Scholar 

  • Ghaleb, K.O.: Le Mikyas ou Nilomètre de l’\(\hat{\rm {l}}\)le de Rodah. Mem. Inst. Egypte, 54 (1951)

    Google Scholar 

  • Ghil, M., Taricco, C.: Advanced spectral analysis methods. In: Cini Castagnoli, G. Provenzale, A. (eds.) Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models. Società Italiana di Fisica, Bologna, Italy & IOS Press, Amsterdam (1997)

    Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: Advanced spectral methods for climatic time series. Rev. Geophys. 40(1), 1.1–1.41 (2002)

    Google Scholar 

  • Golyandina, N., Nekrutkin, V., Zhigliavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  • Golyandina, N., Stepanov, D.: SSA-Based approaches to analysis and forecast of multidimensional time series. In: Proceedings of the 5th St. Petersburg Workshop on Simulation, June 26-July 2, 2005, pp. 293-298. St. Petersburg State University, St. Petersburg (2005)

    Google Scholar 

  • Golyandina, N., Zhigljavsky, A.: Singular Spectrum Analysis for Time Series. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Greco, G., Rosa, R., Beskin, G., Karpov, S., Romano, L., Guarnieri, A., Bartolini, C., Bedogni, R.: Evidence of deterministic components in the apparent randomness of GRBs: clues of a chaotic dynamic. Sci. Rep. 1, 91 (2011)

    Article  Google Scholar 

  • Grigorov, M.: Global dynamics of biological systems from time-resolved omics experiments. Bioinformatics 22(12), 1424–1430 (2006)

    Article  Google Scholar 

  • Groth, A., Ghil, M.: Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev. E 84(036206), 1–10 (2011)

    Google Scholar 

  • Groth, A., Ghil, M., Hallegatte, S., Dumas, P.: The Role of Oscillatory Modes in U.S. Business Cycles. Working Paper 26. Fondazione ENI Enrico Mattei (FEEM), Milan (2012)

    Google Scholar 

  • Hallegatte, S., Ghil, M., Dumas, P., Hourcade, J.: Business cycles, bifurcations and chaos in neo-classical model with investment dynamics. J. Econ. Behav. Organ. 67, 57–77 (2008)

    Article  Google Scholar 

  • Hassani, H., Thomakos, D.: A review on singular spectrum analysis for economic and financial time series. Stat. Interf. 3(3), 377–397 (2010)

    Google Scholar 

  • Hassani, H., Soofi, A., Zhigljavsky, A.: Predicting daily exchange rate with singular spectrum analysis. Nonlinear Anal.: Real World Appl. 11, 2023–2034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani, H., Heravi, S., Zhigljavsky, A.: Forecasting UK industrial production with multivariate singular spectrum analysis. J. Forecast. 32(5), 395–408 (2013)

    Article  MathSciNet  Google Scholar 

  • Hassani, H., Mahmoudvand, R.: Multivariate singular spectrum analysis: a general view and new vector forecasting approach. Int. J. Energy Stat. 1(1), 55–83 (2013)

    Article  Google Scholar 

  • Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (1996)

    Google Scholar 

  • Hirsch, R.M., Slack, J.R.: A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 20(6), 727–732 (1984)

    Google Scholar 

  • Hirsch, R.M., Slack, J.R., Smith, R.A.: Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18(1), 107–121 (1982)

    Article  Google Scholar 

  • Hodrick, R., Prescott, E.C.: Postwar U.S. business cycles: an empirical investigation. J. Money, Credit, Banking 29(1), 1–16 (1997)

    Google Scholar 

  • Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200 (1958)

    Article  MATH  Google Scholar 

  • Hurst, H.E.: The Nile. Constable, London (1952)

    MATH  Google Scholar 

  • Karhunen, K.: Zur Spektraltheorie stochastischer prozesse. Annales Academiae Scientiarum Fennicae, Ser. A1, Math.-Phys., 34, 1–7 (1946)

    Google Scholar 

  • Karhunen, K.: ber lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae Scientiarum Fennicae, Ser. A1, Math.-Phys., 37, 1–79 (1947)

    Google Scholar 

  • Keppenne, C.L., Ghil, M.: Adaptive filtering and prediction of the Southern Oscillation index. J. Geophys. Res. 97, 20449–20454 (1992)

    Article  Google Scholar 

  • Keppenne, C.L., Ghil, M.: Adaptive filtering and prediction of noisy multivariate signals: an application to subannual variability in atmospheric angular momentum. Intl. J. Bifurcat. Chaos 3, 625–634 (1993)

    Article  MATH  Google Scholar 

  • Kondrashov, D., Ghil, M.: Spatio-temporal filling of missing points in geophysical data sets. Nonlin. Process. Geophys. 13, 151–159 (2006)

    Article  Google Scholar 

  • Kondrashov, D., Feliks, Y., Ghil, M.: Oscillatory modes of extended Nile River records (A.D. 622–1922). Geophys. Res. Lett. 32, L10702 (2005)

    Article  Google Scholar 

  • Kondrashov, D., Shprits, Y.Y., Ghil, M.: Gap filling of solar wind data by singular spectrum analysis. Geophys. Res. Lett. 37, L15101 (2010)

    Article  Google Scholar 

  • Kondrashov, D., Denton, R., Shprits, Y.Y., Singer, H.J.: Reconstruction of gaps in the past history of solar wind parameters. Geophys. Res. Lett. 41, 2702–2707 (2014)

    Article  Google Scholar 

  • Loéve, M.: Probability Theory, Vol. II. Graduate Texts in Mathematics, vol. 46. Springer, Berlin (1978)

    Google Scholar 

  • Mac Lane, S., Birkhoff, G.: Algebra. AMS Chelsea Publishing, New York (1999)

    Google Scholar 

  • Mañé, R.: On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps. Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 230–242. Springer, Berlin (1981)

    Google Scholar 

  • Mann, M.E., Lees, J.M.: Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33(3), 409–445 (1996)

    Article  Google Scholar 

  • Mineva, A., Popivanov, D.: Method of single-trial readiness potential identification, based on singular spectrum analysis. J. Neurosci. Methods 68, 91–99 (1996)

    Article  Google Scholar 

  • Patterson, K., Hassani, H., Heravi, S., Zhigljavsky, A.: Multivariate singular spectrum analysis for forecasting revisions to real-time data. J. Appl. Stat. 38(10), 2183–2211 (2011)

    Article  MathSciNet  Google Scholar 

  • Penland, C., Ghil, M., Weickmann, K.M.: Adaptive filtering and maximum entropy spectra, with application to changes in atmospheric angular momentum. J. Geophys. Res. 96, 22659–22671 (1991)

    Article  Google Scholar 

  • Plaut, G., Vautard, R.: Spells of low-frequency oscillations and weather regimes in the northern hemisphere. J. Atmos. Sci. 51(2), 210–236 (1994)

    Article  MathSciNet  Google Scholar 

  • Popper, W.: The Cairo Nilometer. University of California Press, Berkeley (1951)

    Google Scholar 

  • Quinn, W.H.: A Study of Southern Oscillation-Related Climatic Activity for A.D. 622–1900 Incorporating Nile River Flood Data. In: Diaz, H.F., Markgraf, V. (eds.) El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge University Press, New York (1992)

    Google Scholar 

  • Robertson, A.W., Mechoso, C.R.: Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Wea. Rev. 128, 2947–2957 (2000)

    Article  Google Scholar 

  • Rodó, X., Pascual, M., Fuchs, G., Faruque, A.S.G.: ENSO and cholera: a nonstationary link related to climate change? Proc. Nat. Acad. Sci. USA 99(20), 12901–12906 (2002)

    Article  Google Scholar 

  • Sella, L.: Old and New Spectral Techniques for Economic Time Series. Cognetti de Martiis Working Papers Series, N. 09/2008. Department of Economics. Torino University, Torino (2008)

    Google Scholar 

  • Sella, L., Marchionatti, R.: On the cyclical variability of economic growth in Italy, 1881–1913: a critical note. Cliometrica 6(3), 307–328 (2012)

    Article  Google Scholar 

  • Sella, L., Vivaldo, G., Groth, A., Ghil, M.: Economic Cycles and Their Synchronization: A Survey of Spectral Properties. Working Paper 105.2013. Fondazione ENI Enrico Mattei (FEEM), Milan (2013)

    Google Scholar 

  • Shackleton, N.J., Kennett, J.P.: Palaeo-temperature history of the cenozoic and the initiation of Antarctic Glaciation: oxygen and carbon isotope analysis in DSDP Sites 277, 279 and 281. In: Kennett, J.P., Houtz, R.E. (eds.) Initial Reports of the Deep Sea Drilling Project, vol. 5, pp. 743–755. US Government Printing Office, Washington (1975)

    Google Scholar 

  • Takens, F.: Detecting Strange Attractors in Turbulence. Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  • Taricco, C., Ghil, M., Alessio, S., Vivaldo, G.: Two millennia of climate variability in the central mediterranean. Clim. Past 5, 171–181 (2009)

    Article  Google Scholar 

  • Taricco, C., Vivaldo, G., Alessio, S., Rubinetti, S., Mancuso, S.: A high-resolution \(\delta ^{18}\)O record and Mediterranean climate variability. Clim. Past 11, 509–522 (2015)

    Article  Google Scholar 

  • Thomakos, D.D., Tao Wang, T., Wille, L.T.: Modeling daily realized futures volatility with singular spectrum analysis. Phys. A, Stat. Mech. Appl. 312(3–4), 505–519 (2002)

    Google Scholar 

  • Toussoun, O.: Mémoire sur l’histoire du Nil. Mem. Inst. Egypte 18, 366–404 (1925)

    Google Scholar 

  • Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D 35, 395–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: a toolkit for short, noisy. Chaotic Signals. Phys. D 58, 95–126 (1992)

    Google Scholar 

  • Walker, G.T.: Correlation in seasonal variations of weather: II. Indian Meteorol. Mem. 21, 1–21 (1910)

    Google Scholar 

  • Whitcher, B.J., Byers, S.D., Guttorp, P., Percival, D.B.: Testing for homogeneity of variance in time series: long memory, wavelets and the Nile River. Water Resour. Res. 38(5), 12-1–12-16 (2002)

    Google Scholar 

  • Whittaker, E.T.: On a new method of graduation. Proc. Edinburgh Math. Assoc. 41, 63–75 (1923)

    Google Scholar 

  • Zhigljavsky, A. (Ed.): Special issue on theory and practice in singular spectrum analysis of time series. Stat. Interf. 3(3) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Maria Alessio .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alessio, S.M. (2016). Singular Spectrum Analysis (SSA). In: Digital Signal Processing and Spectral Analysis for Scientists. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25468-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25468-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25466-1

  • Online ISBN: 978-3-319-25468-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics