Skip to main content

Cartesian to Ellipsoidal Mapping

  • Chapter
  • First Online:
  • 1022 Accesses

Abstract

In establishing a proper reference frame of geodetic point positioning, namely by the Global Positioning System (GPS) – the Global Problem Solver – we are in need to establish a proper model for the Topography of the Earth, the Moon, the Sun or planets. By the theory of equilibrium figures, we are informed that an ellipsoid, two-axes or three-axes is an excellent approximation of the Topography. For planets similar to the Earth the biaxial ellipsoid, also called “ellipsoid-of-revolution” is the best approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)

    Google Scholar 

  2. Awange JL, Grafarend EW, Fukuda Y, Takemoto S (2005) The application of commutative algebra to geodesy: two examples. J Geod 79:93–102

    Article  Google Scholar 

  3. Bartelme N, Meissl P (1975) Ein einfaches, rasches und numerisch stabiles Verfahren zur Bestimmung des kürzesten Abstandes eines Punktes von einem sphäroidischen Rotationsellipsoid. Allgemeine Vermessungs-Nachrichten 82:436–439

    Google Scholar 

  4. Benning W (1974) Der kürzeste Abstand eines in rechtwinkligen Koordinaten gegebenen Außenpunktes vom Ellipsoid. Allgemeine Vermessungs-Nachrichten 81:429–433

    Google Scholar 

  5. Benning W (1987) Iterative ellipsoidische Lotfußpunktberechung. Allgemeine Vermessungs-Nachrichten 94:256–260

    Google Scholar 

  6. Borkowski KM (1987) Transformation of geocentric to geodetic coordinates without approximation. Astrophys Space Sci 139:1–4

    Article  Google Scholar 

  7. Borkowski KM (1989) Accurate algorithm to transform geocentric to geodetic coordinates. Bull Geod 63:50–56

    Article  Google Scholar 

  8. Bowring BR (1976) Transformation from spatial to geographical coordinates. Surv Rev 23:323–327

    Article  Google Scholar 

  9. Bowring BR (1985) The accuracy of geodetic latitude and height equations. Surv Rev 28:202–206

    Article  Google Scholar 

  10. Croceto N (1993) Point projection of topographic surface onto the reference ellipsoid of revolution in geocentric Cartesian coordinates. Surv Rev 32:233–238

    Article  Google Scholar 

  11. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least squares fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21:476–480

    Article  Google Scholar 

  12. Fotiou A (1998) A pair of closed expressions to transform geocentric to geodetic coordinates. Zeitschrift für Vermessungswesen 123:133–135

    Google Scholar 

  13. Fröhlich H, Hansen HH (1976) Zur Lotfußpunktrechnung bei rotationsellipsoidischer Bezugsfläche. Allgemeine Vermessungs-Nachrichten 83:175–179

    Google Scholar 

  14. Fukushima T (1999) Fast transform from geocentric to geodetic coordinates. J Geod 73:603–610

    Article  Google Scholar 

  15. Gander W, Golub GH, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT No 43:558–578

    Article  Google Scholar 

  16. Grafarend EW (2000) Gaußsche flächennormale Koordinaten im Geometrie- und Schwereraum. Erste Teil: Flächennormale Ellipsoidkoordinaten. Zeitschrift für Vermessungswesen 125:136–139

    Google Scholar 

  17. Grafarend EW (2000) Gaußsche flächennormale Koordinaten im Geometrie- und Schwereraum. Erste Teil: Flächennormale Ellipsoidkoordinaten. Zeitschrift für Vermessungswesen 125:136–139

    Google Scholar 

  18. Grafarend EW, Ardalan A (1999) World geodetic datum 2000. J Geod 73:611–623

    Article  Google Scholar 

  19. Grafarend EW, Lohse P (1991) The minimal distance mapping of the topographic surface onto the (reference) ellipsoid of revolution. Manuscripta Geodaetica 16:92–110

    Google Scholar 

  20. Grafarend EW, Syffus R, You RJ (1995) Projective heights in geometry and gravity space. Allgemeine Vermessungs-Nachrichten 102:382–402

    Google Scholar 

  21. Heck B (1987) Rechenverfahren und Auswertemodelle der Landesvermessung. Wichmann Verlag, Karlsruhe

    Google Scholar 

  22. Heikkinen M (1982) Geschlossene Formeln zur Berechnung räumlicher geodätischer Koordinaten aus rechtwinkligen Koordinaten. Zeitschrift für Vermessungswesen 107:207–211

    Google Scholar 

  23. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, London

    Google Scholar 

  24. Hirvonen R, Moritz H (1963) Practical computation of gravity at high altitudes. Report No. 27, Institute of Geodesy, Photogrammetry and Cartography, Ohio State University, Ohio

    Google Scholar 

  25. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, Wien

    Book  Google Scholar 

  26. Lapaine M (1990) A new direct solution of the transformation problem of Cartesian into ellipsoidal coordinates. In: Rapp RH, Sanso F (eds) Determination of the geoid: present and future. Springer, New York, pp 395–404

    Google Scholar 

  27. Lin KC, Wang J (1995) Transformation from geocentric to geodetic coordinates using Newton’s iteration. Bull Geod 69:300–303

    Article  Google Scholar 

  28. Loskowski P (1991) Is Newton’s iteration faster than simple iteration for transformation between geocentric and geodetic coordinates? Bull Geod 65:14–17

    Google Scholar 

  29. Ozone MI (1985) Non-iterative solution of the φ equations. Surv Mapp 45:169–171

    Google Scholar 

  30. Paul MK (1973) A note on computation of geodetic coordinates from geocentric (Cartesian) coordinates. Bull Geod 108:135–139

    Article  Google Scholar 

  31. Penev P (1978) The transformation of rectangular coordinates into geographical by closed formulas. Geo Map Photo 20:175–177

    Google Scholar 

  32. Pick M (1985) Closed formulae for transformation of Cartesian coordinates into a system of geodetic coordinates. Studia geoph et geod 29:653–666

    Article  Google Scholar 

  33. Sjöberg LE (1999) An efficient iterative solution to transform rectangular geocentric coordinates to geodetic coordinates. Zeitschrift für Vermessungswesen 124:295–297

    Google Scholar 

  34. Soler T, Hothem LD (1989) Important parameters used in geodetic transformations. J Surv Eng 115:414–417

    Article  Google Scholar 

  35. Sünkel H (1999) Ein nicht-iteratives Verfahren zur Transformation geodätischer Koordinaten. Öster. Zeitschrift für Vermessungswesen 64:29–33

    Google Scholar 

  36. Torge W (1991) Geodesy, 2nd edn. Walter de Gruyter, Berlin

    Book  Google Scholar 

  37. Vanicek P, Krakiwski EJ (1982) Geodesy: the concepts. North-Holland Publishing Company, Amsterdam/New York/Oxford

    Google Scholar 

  38. Vincenty T (1978) Vergleich zweier Verfahren zur Berechnung der geodätischen Breite und Höhe aus rechtwinkligen koorninaten. Allgemeine Vermessungs-Nachrichten 85:269–270

    Google Scholar 

  39. Vincenty T (1980) Zur räumlich-ellipsoidischen Koordinaten-Transformation. Zeitschrift für Vermessungswesen 105:519–521

    Google Scholar 

  40. You RJ (2000) Transformation of Cartesian to geodetic coordinates without iterations. J Surv Eng 126:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Paláncz, B. (2016). Cartesian to Ellipsoidal Mapping. In: Geospatial Algebraic Computations. Springer, Cham. https://doi.org/10.1007/978-3-319-25465-4_14

Download citation

Publish with us

Policies and ethics