Skip to main content

Batteries for Implants

  • Chapter
  • First Online:
Implantable Medical Electronics

Abstract

Batteries for implants must possess characteristics such as safety, reliability, high volumetric energy density, low self-discharge, and long duration of service, which represent essential commitments from manufacturers. The state of discharge must be indicated. In the primary batteries, lithium metal anodes are used. The cathode systems include iodine, manganese oxide, carbon monofluoride, silver vanadium oxide, and crossbreed or hybrid cathodes. This choice of batteries caters to the power levels required by implantable devices, which are spread over a broad range of current values from microampere to ampere levels. Limited battery life is a major impediment to the development of advanced medical implant devices, e.g., when a pacemaker battery runs out, it has to be replaced by surgery. With progressive shrinkage of implant size, more emphasis is laid on building smaller, longer-lasting batteries. Applications involving high power usage rates such as neurostimulators working at milliwatt powers employ secondary rechargeable batteries to achieve longer life span with reduced size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  2. Takeuchi ES, Leising RA, Spillman DM et al (2003) Lithium batteries for medical applications. In: Nazri G-A, Pistoia G (eds) Lithium batteries-science and technology. Springer, New York, pp 686–700

    Chapter  Google Scholar 

  3. Gutmann F, Hermann AM, Rembaum A (1967) Solid-state electrochemical cells based on charge transfer complexes. J Electrochem Soc 114:323–329

    Article  Google Scholar 

  4. Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery—35 years of successful clinical use. ECS Trans 6(5):1–7

    Article  Google Scholar 

  5. Rudolph FW (1990) Anode coating for lithium cell. US Patent 4,934,306

    Google Scholar 

  6. Pistoia G (1982) Some restatements on the nature and behavior of MnO2 for Li batteries. J Electrochem Soc 129(9):1861–1865

    Article  Google Scholar 

  7. Ohzuku T, Kitagawa M, Hirai T (1989) Electrochemistry of manganese dioxide in lithium nonaqueous cell I. X‐ray diffractional study on the reduction of electrolytic manganese dioxide. J Electrochem Soc 136(11):3169–3174

    Article  Google Scholar 

  8. Nardi JC (1985) Characterization of the Li/MnO2 multistep discharge. J Electrochem Soc 132:1787–1791

    Article  Google Scholar 

  9. Usrey ML, Chen X, Pena Hueso JA, et al (2010) Lithium/carbon monofluoride batteries with organosilicon electrolytes. United States Patent US 8,486,569 B2

    Google Scholar 

  10. Greatbatch W, Holmes CF, Takeuchi ES et al (1996) Lithium/carbon monofluoride (Li/CFx): a new pacemaker battery. Pacing Clin Electrophysiol 19(11):1836–1840

    Article  Google Scholar 

  11. Zhang SS, Foster D, Read J (2009) Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. J Power Sources 188:601–605

    Article  Google Scholar 

  12. Zhang SS, Foster D, Read J (2009) Carbothermal treatment for the improved discharge performance of primary Li/CFx battery. J Power Sources 191:648–652

    Article  Google Scholar 

  13. Rangasamy E, Li J, Sahu G et al (2014) Pushing the theoretical limit of Li-CFx batteries: a tale of bifunctional electrolyte. J Am Chem Soc 136(19):6874–6877

    Article  Google Scholar 

  14. Chen K, Merritt DR, Howard WG et al (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sources 162:837–840

    Article  Google Scholar 

  15. Takeuchi ES, Thiebolt WC III (1988) The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells. J Electrochem Soc 135(11):2691–2694

    Article  Google Scholar 

  16. Leising RA, Thiebolt WC, Takeuchi ES (1994) Solid-state characterization of reduced silver vanadium oxide from the Li/SVO discharge reaction. Inorg Chem 33:5733–5740

    Article  Google Scholar 

  17. Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841–9848

    Article  Google Scholar 

  18. Fehrmann G, Frömmel R, Wolf R (1996) Galvanic cell having improved cathode, US Patent 5,587,258.

    Google Scholar 

  19. Drews J, Wolf R, Fehrmann G et al (1997) High-rate lithium manganese-dioxide batteries—the double cell concept. J Power Sources 65(1-2):129–132

    Article  Google Scholar 

  20. Drews J, Wolf R, Fehrmann G et al (1999) Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator cardioverter (ICD). J Power Sources 80(1-2):107–111

    Article  Google Scholar 

  21. Root MJ (2010) Lithium–manganese dioxide cells for implantable defibrillator devices—discharge voltage models. J Power Sources 195(15):5089–5093

    Article  Google Scholar 

  22. Gan H, Rubino RS, Takeuchi ES (2005) Dual-chemistry cathode system for high-rate pulse applications. J Power Sources 146:101–106

    Article  Google Scholar 

  23. Brodd RJ, Bullock KR, Leising RA et al (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11

    Article  Google Scholar 

  24. Orman HJ, Wiseman PJ (1984) Cobalt (III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr C C40:12–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanna, V.K. (2016). Batteries for Implants. In: Implantable Medical Electronics. Springer, Cham. https://doi.org/10.1007/978-3-319-25448-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25448-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25446-3

  • Online ISBN: 978-3-319-25448-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics