Skip to main content

Dilemmas and Enigmas of Implantable IC Design

  • Chapter
  • First Online:
Implantable Medical Electronics

Abstract

Very low power consumption and impeccable reliability are the crucial requirements of implantable electronics. Extremely small power utilization necessitates close attention to power management and budgeting. Together with reliability considerations, it impacts circuit design and fabrication processes, besides influencing the testing methodologies. Reliability physics and failure mechanisms must also be reexamined. An obvious outcome is that the standard designs and processes available from wafer foundries no longer hold; they need to be suitably modified from the viewpoint of power saving and reliability enhancement. The demands become more appalling in the wake of increasing system complexity without concomitantly making more power available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerrish P, Herrmann E, Tyler L et al (2005) Challenges and constraints in designing implantable medical ICs. IEEE Trans Device Mater Reliabil 5(3):435–444

    Article  Google Scholar 

  2. Semenov O, Pradzynski A, Sachdev M (2002) Impact of gate induced drain leakage on overall leakage of submicrometer CMOS VLSI circuits. IEEE Trans Semicond Manuf 15(1):9–18

    Article  Google Scholar 

  3. Kurimoto K, Odake Y, Odanaka S (1989) Drain leakage current characteristics due to the band-to-band tunneling in LDD MOS devices. Technical Digest International Electron Devices Meeting (IEDM ‘89), 3–6 Dec, Washington, DC, pp 621–624

    Google Scholar 

  4. Riccò B, Gozzi G, Lanzoni M (1998) Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films. IEEE Trans Electron Devices 45(7):1554–1560

    Article  Google Scholar 

  5. Pantisano L, Cheung KP (2001) Stress-induced leakage current (SILC) and oxide breakdown: Are they from the same oxide traps? IEEE Trans Device Mater Reliabil 1(2):109–112

    Article  Google Scholar 

  6. Stathis JH, Zafar S (2006) The negative bias temperature instability in MOS devices: A review. Microelectron Reliabil 46:270–286

    Article  Google Scholar 

  7. Schroder DK (2007) Negative bias temperature instability: What do we understand? Microelectron Reliabil 47:841–852

    Article  Google Scholar 

  8. Lundberg KH (2002) Noise Sources in Bulk CMOS. pp 1–12. http://web.mit.edu/klund/www/papers/UNP_noise.pdf. Accessed 30 July 2015

  9. McWhorter AL (1957) 1/f noise and germanium surface properties. In: Kingdton RH (ed) Semiconductor surface physics. University of Pennsylvania Press, Philadelphia, pp 207–228

    Google Scholar 

  10. Hooge FN (1969) 1/f noise is no surface effect. Phys Lett 29A(3):139–140

    Article  Google Scholar 

  11. Hooge FN, Vandamme LKJ (1978) Lattice scattering causes 1/ƒ noise. Phys Lett A 66(4):315–316

    Article  Google Scholar 

  12. Jindal RP, van der Ziel A (1981) Phonon fluctuation model for flicker noise in elemental semiconductors. J Appl Phys 52(4):2884–2888

    Article  Google Scholar 

  13. Hung KK, Ko PK, Hu C et al (1990) A physics-based MOSFET noise model for circuit simulators. IEEE Trans Electron Devices 37(5):1323–1333

    Article  Google Scholar 

  14. van der Wel AP, Klumperink EAM, Nauta B (2001) Effect of switched biasing on l/f noise and random telegraph signals in deep-submicron MOSFETs. Electron Lett 37(1):55–56

    Article  Google Scholar 

  15. Palmer R (2001) DC parameters: input offset voltage (VIO) Application Report SLOA059-March 2001, Texas Instruments, pp 1–24

    Google Scholar 

  16. Troutman RR (1989) VLSI limitations from drain-induced barrier lowering. IEEE J Solid State Circuits SC-14(2):383–391

    Google Scholar 

  17. Vittoz EA (1994) Analog VLSI signal processing: why, where and how? Analog Integr Circuits Signal Process 8:27–44

    Article  Google Scholar 

  18. Intel (2000) ESD/EOS. 2000 Packaging Databook, pp 6-1–6-8

    Google Scholar 

  19. Patel P, Zafar S, Soni H (2014) Performance of various sense amplifier topologies in sub100 nm planar MOSFET technology. Int J Emerg Trends Technol Comp Sci 3(2):42–49

    Google Scholar 

  20. Jiang L, Xueqiang W, Qin W et al (2010) A low-voltage sense amplifier for high-performance embedded flash memory. J Semiconductors 31(10):105001-1–105001-5

    Article  Google Scholar 

  21. Kumar S, Singh SK, Noor A et al (2011) Comparative study of different sense amplifiers in submicron CMOS technology. Int J Adv Eng Technol 1(5):342–350

    Google Scholar 

  22. Kelly A (2012) Integrated circuit design for miniature implantable medical devices. Embedded systems conference, Design East, Boston, 18 Sept 2012, pp 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanna, V.K. (2016). Dilemmas and Enigmas of Implantable IC Design. In: Implantable Medical Electronics. Springer, Cham. https://doi.org/10.1007/978-3-319-25448-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25448-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25446-3

  • Online ISBN: 978-3-319-25448-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics