Advertisement

Dilemmas and Enigmas of Implantable IC Design

  • Vinod Kumar Khanna
Chapter

Abstract

Very low power consumption and impeccable reliability are the crucial requirements of implantable electronics. Extremely small power utilization necessitates close attention to power management and budgeting. Together with reliability considerations, it impacts circuit design and fabrication processes, besides influencing the testing methodologies. Reliability physics and failure mechanisms must also be reexamined. An obvious outcome is that the standard designs and processes available from wafer foundries no longer hold; they need to be suitably modified from the viewpoint of power saving and reliability enhancement. The demands become more appalling in the wake of increasing system complexity without concomitantly making more power available.

Keywords

CMOS GIDL Leakage current SILC NBTI Noise DIBL Short-channel effects ESD Sense amplifier 

References

  1. 1.
    Gerrish P, Herrmann E, Tyler L et al (2005) Challenges and constraints in designing implantable medical ICs. IEEE Trans Device Mater Reliabil 5(3):435–444CrossRefGoogle Scholar
  2. 2.
    Semenov O, Pradzynski A, Sachdev M (2002) Impact of gate induced drain leakage on overall leakage of submicrometer CMOS VLSI circuits. IEEE Trans Semicond Manuf 15(1):9–18CrossRefGoogle Scholar
  3. 3.
    Kurimoto K, Odake Y, Odanaka S (1989) Drain leakage current characteristics due to the band-to-band tunneling in LDD MOS devices. Technical Digest International Electron Devices Meeting (IEDM ‘89), 3–6 Dec, Washington, DC, pp 621–624Google Scholar
  4. 4.
    Riccò B, Gozzi G, Lanzoni M (1998) Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films. IEEE Trans Electron Devices 45(7):1554–1560CrossRefGoogle Scholar
  5. 5.
    Pantisano L, Cheung KP (2001) Stress-induced leakage current (SILC) and oxide breakdown: Are they from the same oxide traps? IEEE Trans Device Mater Reliabil 1(2):109–112CrossRefGoogle Scholar
  6. 6.
    Stathis JH, Zafar S (2006) The negative bias temperature instability in MOS devices: A review. Microelectron Reliabil 46:270–286CrossRefGoogle Scholar
  7. 7.
    Schroder DK (2007) Negative bias temperature instability: What do we understand? Microelectron Reliabil 47:841–852CrossRefGoogle Scholar
  8. 8.
    Lundberg KH (2002) Noise Sources in Bulk CMOS. pp 1–12. http://web.mit.edu/klund/www/papers/UNP_noise.pdf. Accessed 30 July 2015
  9. 9.
    McWhorter AL (1957) 1/f noise and germanium surface properties. In: Kingdton RH (ed) Semiconductor surface physics. University of Pennsylvania Press, Philadelphia, pp 207–228Google Scholar
  10. 10.
    Hooge FN (1969) 1/f noise is no surface effect. Phys Lett 29A(3):139–140CrossRefGoogle Scholar
  11. 11.
    Hooge FN, Vandamme LKJ (1978) Lattice scattering causes 1/ƒ noise. Phys Lett A 66(4):315–316CrossRefGoogle Scholar
  12. 12.
    Jindal RP, van der Ziel A (1981) Phonon fluctuation model for flicker noise in elemental semiconductors. J Appl Phys 52(4):2884–2888CrossRefGoogle Scholar
  13. 13.
    Hung KK, Ko PK, Hu C et al (1990) A physics-based MOSFET noise model for circuit simulators. IEEE Trans Electron Devices 37(5):1323–1333CrossRefGoogle Scholar
  14. 14.
    van der Wel AP, Klumperink EAM, Nauta B (2001) Effect of switched biasing on l/f noise and random telegraph signals in deep-submicron MOSFETs. Electron Lett 37(1):55–56CrossRefGoogle Scholar
  15. 15.
    Palmer R (2001) DC parameters: input offset voltage (VIO) Application Report SLOA059-March 2001, Texas Instruments, pp 1–24Google Scholar
  16. 16.
    Troutman RR (1989) VLSI limitations from drain-induced barrier lowering. IEEE J Solid State Circuits SC-14(2):383–391Google Scholar
  17. 17.
    Vittoz EA (1994) Analog VLSI signal processing: why, where and how? Analog Integr Circuits Signal Process 8:27–44CrossRefGoogle Scholar
  18. 18.
    Intel (2000) ESD/EOS. 2000 Packaging Databook, pp 6-1–6-8Google Scholar
  19. 19.
    Patel P, Zafar S, Soni H (2014) Performance of various sense amplifier topologies in sub100 nm planar MOSFET technology. Int J Emerg Trends Technol Comp Sci 3(2):42–49Google Scholar
  20. 20.
    Jiang L, Xueqiang W, Qin W et al (2010) A low-voltage sense amplifier for high-performance embedded flash memory. J Semiconductors 31(10):105001-1–105001-5CrossRefGoogle Scholar
  21. 21.
    Kumar S, Singh SK, Noor A et al (2011) Comparative study of different sense amplifiers in submicron CMOS technology. Int J Adv Eng Technol 1(5):342–350Google Scholar
  22. 22.
    Kelly A (2012) Integrated circuit design for miniature implantable medical devices. Embedded systems conference, Design East, Boston, 18 Sept 2012, pp 1–14Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinod Kumar Khanna
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations