Drug Delivery Implants

  • Vinod Kumar Khanna


Implantable drug delivery devices, nondegradable reservoir or biodegradable types, have shown great prospects. These devices have revealed ostensible possibilities of advancement in several applications demanding onerous efforts in controlled and precise, highly localized liberation of decisive doses of drugs with fewer side effects and without direct medical intervention. Actively controlled devices are more propitious than passive release devices. This greater potentiality of active devices is because the drug delivery process can be controlled postimplantation and even by telemetry, involving automatic measurements and telecommunication. Dissenting from passive devices, they do not rely on the chemistry of degradation of specific materials in the premeditated region of implant. Numerous implantable drug delivery devices have been reconnoitered for use in chronic and terminal diseases. Diabetes, osteoporosis, and cancer are a few such examples.


Drug delivery Oral/nasal/pulmonary/transdermal/intravenous/intramuscular drug delivery IDDS Zero-order controlled release Sterilization Biodegradation Immunoisolating capsule Microreservoir Micropump Osmotic pump MEMS Piezoelectric pump 


  1. 1.
    Arps J (2013) Implantable drug delivery devices—an overview. Med Design Technol. Accessed 5 Feb 2015
  2. 2.
    Stuart A (2010) The promise of implantable drug delivery systems. Eyenet: 33–37Google Scholar
  3. 3.
    Maloney JM (2003) An implantable microfabricated drug delivery system. In: Proceedings of IMECE’03, 2003 ASME International Mechanical Engineering Congress and Exposition, Washington, DC, 15–21 Nov, Paper No. IMECE2003-43186, pp 115–116. doi: 10.1115/IMECE2003-43186. Copyright © 2003 by ASME
  4. 4.
    Gupta H, Bhandari D, Sharma A (2009) Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 3(2):162–173CrossRefGoogle Scholar
  5. 5.
    Djupesland PG (2013) Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res 3(1):42–62CrossRefGoogle Scholar
  6. 6.
    Patil JS, Sarasija S (2012) Pulmonary drug delivery strategies: a concise, systematic review. Lung India 29(1):44–49CrossRefGoogle Scholar
  7. 7.
    Shingade GM, Aamer Q, Sabale PM (2012) Review on: recent trend on transdermal drug delivery system. J Drug Deliv Ther 2(1):66–75Google Scholar
  8. 8.
    Yalkowsky SH, Krzyzaniak JF, Ward GH (1998) Formulation-related problems associated with intravenous drug delivery. J Pharm Sci 87(7):787–796CrossRefGoogle Scholar
  9. 9.
    Rajgor N, Patel M, Bhaskar VH (2011) Implantable drug delivery systems: an overview. Syst Rev Pharm 2(2):91–95CrossRefGoogle Scholar
  10. 10.
    Siegel RA, Rathbone MJ (2012) Chapter 2: Overview of controlled release mechanisms. In: J Siepmann, RA Siegel, MJ Rathbone (eds) Fundamentals and applications of controlled release drug delivery. © Controlled Release Society, pp 19–43Google Scholar
  11. 11.
    Lux CDG, Mahmoud E, Joshi-Barr S (2015) Bioresponsive materials. ©2015 Regents of the University of California. Accessed 6 Feb 2015
  12. 12.
    Solanki HK, Thakkar JH, Jani GK (2010) Recent advances in implantable drug delivery. Int J Pharm Sci Rev Res 4(3):168–177Google Scholar
  13. 13.
    Bhowmik D, Gopinath H, Kumar BP et al (2012) Controlled release drug delivery systems. Pharma Innovation 1(10):24–32Google Scholar
  14. 14.
    Japp NS (2008) Sterilization processes: what every infection control practitioner needs to know. Infect Control Res 5(1):1, 5–7Google Scholar
  15. 15.
    Tilton G, Kauffman M (2004) Sterilization: a review of the basics. Manag Infect Control: 66–71Google Scholar
  16. 16.
    Ronak K, Yatin K, Baldaniya L et al (2012) Implant-controlled release medicated formulation. Int J Pharma Chem Sci 1(1):59–66Google Scholar
  17. 17.
    Chung AJ, Kim D, Erickson D (2008) Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab Chip 8:330–338CrossRefGoogle Scholar
  18. 18.
    Herrlich S, Spieth S, Messner S (2012) Osmotic micropumps for drug delivery. Ann Drug Deliv Rev 64(14):1617–1627CrossRefGoogle Scholar
  19. 19.
    Santini JT, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397(6717):335–338CrossRefGoogle Scholar
  20. 20.
    Meng E, Hoang T (2012) Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv 3(12):1457–1467CrossRefGoogle Scholar
  21. 21.
    Au AK, Lai H, Utela BR et al (2011) Microvalves and micropumps for BioMEMS. Micromachines 2:179–220CrossRefGoogle Scholar
  22. 22.
    Tng DJH, Hu R, Song P et al (2012) Approaches and challenges of engineering implantable microelectromechanical systems (MEMS) drug delivery systems for in vitro and in vivo applications. Micromachines 3:615–631CrossRefGoogle Scholar
  23. 23.
    Gultepe E, Nagesha D, Sridhar S et al (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62:305–315CrossRefGoogle Scholar
  24. 24.
    Stevenson EL, Santini JT, Langer R (2012) Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 64(14):1590–1602CrossRefGoogle Scholar
  25. 25.
    Desai TA, Chu WH, Tu JK et al (1998) Microfabricated immunoisolating biocapsules. Biotech Bioeng 57(1):118–120CrossRefGoogle Scholar
  26. 26.
    Rahimi S, Sarraf EH, Wong GK et al (2011) Implantable drug delivery device using frequency controlled wireless hydrogel microvalves. Biomed Microdevices 13(2):267–277CrossRefGoogle Scholar
  27. 27.
    Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications—a mini review. Design Monomers Polym 12:197–220CrossRefGoogle Scholar
  28. 28.
    Chung AJ, Huh YS, Erickson D (2009) A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomed Microdevices 11(4):861–867CrossRefGoogle Scholar
  29. 29.
    Pirmoradi FN, Jackson JK, Burt HM et al (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752CrossRefGoogle Scholar
  30. 30.
    Nisar A, Afzulpurkar N, Mahaisavariya B (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130:917–942CrossRefGoogle Scholar
  31. 31.
    Reynaerts D, Peirs J, Brussel HV (1997) An implantable drug delivery system based on shape memory alloy micro-actuation. Sens Actuators A Phys 61:455–462CrossRefGoogle Scholar
  32. 32.
    Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A Phys 117(2):222–229CrossRefGoogle Scholar
  33. 33.
    Woias P (2005) Micropumps- past, present and future prospects. Sens Actuators B Chem 105:28–38CrossRefGoogle Scholar
  34. 34.
    Bourouina T, Bosseboeuf A, Grandchamp JP (1997) Design and simulation of an electrostatic micropump for drug-delivery applications. J Micromech Microeng 7(3):186–188CrossRefGoogle Scholar
  35. 35.
    Van Lintel HTG, Van de Pol FCM, Bouwstra SA (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators A Phys 15:153–168CrossRefGoogle Scholar
  36. 36.
    Debiotech. ©2014—Debiotech S.A.—Switzerland. Accessed 5 Feb 2015
  37. 37.
    Li PY, Shih J, Lo R et al (2008) An electrochemical intraocular drug delivery device. Sens Actuators A Phys 143(1):41–48CrossRefGoogle Scholar
  38. 38.
    Gensler H, Sheybani R, Li PY et al (2012) An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices 14(3):483–496CrossRefGoogle Scholar
  39. 39.
    Abhari F, Jaafar H, Yunus NAM (2012) A comprehensive study of micropumps technologies. Int J Electrochem Sci 7:9765–9780Google Scholar
  40. 40.
    Cooney CG, Towe BC (2004) A thermopneumatic dispensing micropump. Sens Actuators A Phys 116(3):519–524CrossRefGoogle Scholar
  41. 41.
    Spieth S, Schumacher A, Holtzman T et al (2012) An intra-cerebral drug delivery system for freely moving animals. Biomed Microdevices 14(5):799–809CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinod Kumar Khanna
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations