Advertisement

Retinal Prostheses

  • Vinod Kumar Khanna
Chapter

Abstract

Severe visual impairment up to the level of blindness is caused by either age-related macular degeneration or retinitis pigmentosa. These are the two usual diseases that lead to degeneration of the outer part of the retina. But even after cellular degeneration in these diseases, i.e., degradation of light-sensing photoreceptors, the remaining visual system of neural networks in the retina may not be damaged in many patients. For such cases, a subretinal implant containing microphotodiodes is placed beneath the retina. Currents produced in the photodiodes by the incoming light energize microelectrodes which stimulate sensory neurons in the retina. Otherwise, an epiretinal implant placed on the surface of the retina is employed along with a video camera. The camera captures the light signal and translates the data into an electrical signal through a microprocessor. This signal is transduced across the nerve cells, through the optic nerve, and eventually to the brain for the conception of an image.

Keywords

Retina Age-related macular degeneration Retinitis pigmentosa Subretinal implant Epiretinal implant Microphotodiode Argus II retinal system Alpha IMS retinal implant 

References

  1. 1.
    Chuang AT, Margo CE, Greenberg PB (2014) Retinal implants: a systematic review. Br J Ophthalmol 98(7):852–856CrossRefGoogle Scholar
  2. 2.
    Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025CrossRefGoogle Scholar
  3. 3.
    Kien TT, Maul T, Bargiela A et al (2012) A review of retinal prosthesis approaches. Int J Mod Phys 9:209–231Google Scholar
  4. 4.
    Asher A, Segal WA, Baccus SA et al (2007) Image processing for a high-resolution optoelectronic retinal prosthesis. IEEE Trans Biomed Eng 54(6):993–1004CrossRefGoogle Scholar
  5. 5.
    Zureick A (2011) Optoelectronics and retinal prosthesis: the revival of vision. Dartmouth Undergraduate J Sci 13(2):17–18Google Scholar
  6. 6.
    Rizzo JF (2011) Update on retinal prosthetic research: the Boston retinal implant project. J Neuroophthalmol 31:160–168CrossRefGoogle Scholar
  7. 7.
    Stingl K, Bartz-Schmidt KU, Besch D et al (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:20130077, 8 pCrossRefGoogle Scholar
  8. 8.
    Maynard EM (2001) Visual prostheses. Annu Rev Biomed Eng 3:145–168CrossRefGoogle Scholar
  9. 9.
    Rao C, Yuan X-H, Zhang S-J et al (2008) Epiretinal prosthesis for outer retinal degenerative diseases. Int J Ophthalmol 1(3):273–276Google Scholar
  10. 10.
    Javaheri M, Hahn DS, Lakhanpal RR et al (2006) Retinal prostheses for the blind. Ann Acad Med 35(3):137–144Google Scholar
  11. 11.
    Butterwick A, Vankov A, Huie P et al (2007) Progress towards a high-resolution retinal prosthesis. Ophthalmic Technol XVII, SPIE 6426A, 9 pGoogle Scholar
  12. 12.
    Argus II retinal prosthesis system—H110002. Last updated 13 Jan 2015. http://www.fda.gov/medicaldevices/productsandmedicalprocedures/deviceapprovalsandclearances/recently-approveddevices/ucm343162.htm. Accessed 7 Feb 2015
  13. 13.
    Alpha IMS vision restoring wireless retinal implant now cleared in Europe. http://www.medgadget.com/2013/07/alpha-ims-vision-restoring-wireless-retinal-implant-now-cleared-in-europe-video.html. Accessed 7 Feb 2015
  14. 14.
    Retinal implant alpha IMS brings sight to blind in new study, © Medgadget, LLC. 2004–2015. http://www.medgadget.com/2013/02/retinal-implant-alpha-ims.html. Accessed 7 Feb 2015
  15. 15.
    Karmel M (2012) Retinal prostheses: progress and problems. EyeNet: 41–43. http://development.aao.org/publications/eyenet/201203/upload/Clinical-Update-Retina-PDF.pdf. Accessed 3 Aug 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinod Kumar Khanna
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations