Skip to main content

Implantable Sensors

  • Chapter
  • First Online:
Implantable Medical Electronics
  • 2086 Accesses

Abstract

Sensors are the primary components of a monitoring system. Micro- and nanofabrication technologies have now advanced to the stage at which wireless sensor systems can be included in the implants with minor modification. These systems provide unique, personalized data for each patient to be used for optimizing outcomes. An acceleration sensor mounted on an artery is used for blood pressure measurement. Coupling a pressure transducer to the right ventricle (RV) lead of a pacemaker or defibrillator helps in continuous intracardiac pressure monitoring. Implantable chemical sensors are employed for real-time monitoring of clinically important species, e.g., blood gas measurements (pH, pO2, and pCO2). Subcutaneously implanted enzymatic glucose sensors enable continuous glucose monitoring. Single-walled carbon nanotubes (SWCNTs) encased in alginate work as inflammation sensors, which can be implanted for detection of nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puers R (2005) Implantable sensor systems. DISens symposium-book 2005, 14 pages. http://www.disens.tudelft.nl/symposium2005/book/6_puers.pdf. Accessed 31 July 2015

  2. Potkay JA (2008) Long term, implantable blood pressure monitoring systems. Biomed Microdevices 10:379–392

    Article  Google Scholar 

  3. Chatzandroulis S, Tsoukalas D, Neukomm PA (2000) A miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications. J Microelectromech Syst 9(1):18–23

    Article  Google Scholar 

  4. Cleven NJ, Isfort P, Penzkofer T et al (2014) Wireless blood pressure monitoring with a novel implantable device: long-term in vivo results. Cardiovasc Int Radiol. doi 10.1007/s00270-014-0842-0, Springer, p. 1–9

  5. Theodor M, Fiala J, Ruh D et al (2013) W1C.002: Implantable accelerometer for determination of blood pressure. Transducers, Barcelona, Spain, 16–20 June 2013, p. 1659–1662

    Google Scholar 

  6. Theodor M, Ruh D, Förster K et al (2013) Implantable acceleration plethysmography for blood pressure determination. 35th Annual International Conference of the IEEE EMBS Osaka, Japan, 3–7 July 2013, pp 4038–4041

    Google Scholar 

  7. Theodor M, Fiala J, Ruh D et al (2014) Implantable accelerometer system for the determination of blood pressure using reflected wave transit time. Sensors Actuators A Phys 206:151–158

    Article  Google Scholar 

  8. Liang B, Fang L, Tu CL et al (2011) A novel implantable saw sensor for blood pressure monitoring. Transducers’ 11, Beijing, China, 5–9 June 2011, p. 2184–2187

    Google Scholar 

  9. Ye X, Fang L, Liang B et al (2011) Studies of a high-sensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sensors Actuators A Phys 169:74–82

    Article  Google Scholar 

  10. Murphy OH, Bahmanyar MR, Borghi A et al (2013) Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor. Biomed Microdevices 15:737–749

    Article  Google Scholar 

  11. Vaddiraju S, Tomazos I, Burgess DJ et al (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  Google Scholar 

  12. Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) Application of polyanion/Fe3+ multilayered membranes in prevention of biosensor mineralization. J Macromol Sci Pure Appl Chem A39(10):1207–1222

    Article  Google Scholar 

  13. Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2(6):1003–1015

    Article  Google Scholar 

  14. Ishihara K, Tanaka S, Furukawa N et al (1996) Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. 1. Molecular design of polymeric additives and their functions. J Biomed Mater Res 32(3):391–399

    Article  Google Scholar 

  15. Vaddiraju S, Singh H, Burgess DJ et al (2009) Enhanced glucose sensor linearity using poly(vinyl alcohol) hydrogels. J Diabetes Sci Technol 1(3):863–874

    Article  Google Scholar 

  16. Yu B, Moussy Y, Moussy F (2005) Coil-type implantable glucose biosensor with excess enzyme loading. Front Biosci 10:512–520

    Article  Google Scholar 

  17. House JL, Anderson EM, Ward WK (2007) Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: a one-year study. J Diabetes Sci Technol 1(1):18–27

    Article  Google Scholar 

  18. Lu D, Cardiel J, Cao G et al (2010) Nanoporous scaffold with immobilized enzymes during flow-Induced gelation for sensitive H2O2 biosensing. Adv Mater 22(25):2809–2813

    Article  Google Scholar 

  19. Schlosser K, Li Y (2009) Biologically inspired synthetic enzymes made from DNA. Chem Biol 16(3):311–322

    Article  Google Scholar 

  20. Dai Z, Liu S, Bao J et al (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15(17):4321–4326

    Article  Google Scholar 

  21. Frost MC, Meyerhoff ME (2002) Implantable chemical sensors for real-time clinical monitoring: progress and challenges. Curr Opin Chem Biol 6:633–641

    Article  Google Scholar 

  22. Rolfe P (1990) In vivo chemical sensors for intensive-care monitoring. Med Biol Eng Comput 28:B34–B47

    Article  Google Scholar 

  23. Meruva RK, Meyerhoff ME (1998) Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide. Biosens Bioelectron 13:201–212

    Article  Google Scholar 

  24. Espadas-Torre C, Oklejas V, Mowery K et al (1997) Thromboresistant chemical sensors using combined nitric oxide release/ion sensing polymeric films. J Am Chem Soc 119:2321–2322

    Article  Google Scholar 

  25. Telting-Diaz M, Collison ME, Meyerhoff ME (1994) Simplified dual lumen catheter design for simultaneous potentiometric monitoring of carbon dioxide and pH. Anal Chem 66:576–583

    Article  Google Scholar 

  26. Venkatesh B, Clutton-Brock TH, Hendry SP (1995) Continuous measurement of blood gases using a combined electrochemical and spectrophotometric sensor. J Med Eng Technol 18:165–168

    Article  Google Scholar 

  27. Coule LW, Truemper EJ, Steinhart CM (2001) Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients. Crit Care Med 29:420–426

    Article  Google Scholar 

  28. Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility—a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63

    Article  Google Scholar 

  29. Lisman T, Weeterings C, de Groot PG (2005) Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10:2504–2517

    Article  Google Scholar 

  30. Wu Y, Rojas AP, Griffith GW et al (2007) Improving blood compatibility of intravascular oxygen sensors via catalytic decomposition of s-nitrosothiols to generate nitric oxide in situ. Sensors Actuators B Chem 121(1):36–46

    Article  Google Scholar 

  31. Ricotti L, Assaf T, Dario P et al (2013) Wearable and implantable pancreas substitutes. J Artif Organs 16:9–22

    Article  Google Scholar 

  32. Gough DA, Armour JC (1995) Development of the implantable glucose sensor: what are the prospects and why is it taking so long? Diabetes 44:1005–1009

    Article  Google Scholar 

  33. Updike SJ, Shults MC, Gilligan BJ et al (2000) A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetic Care 23(2):208–214

    Article  Google Scholar 

  34. Renard E (2002) Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2:708–716

    Article  Google Scholar 

  35. Iverson NM, Barone PW, Shandell M et al (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873–880

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanna, V.K. (2016). Implantable Sensors. In: Implantable Medical Electronics. Springer, Cham. https://doi.org/10.1007/978-3-319-25448-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25448-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25446-3

  • Online ISBN: 978-3-319-25448-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics