Implantable Sensors

  • Vinod Kumar Khanna


Sensors are the primary components of a monitoring system. Micro- and nanofabrication technologies have now advanced to the stage at which wireless sensor systems can be included in the implants with minor modification. These systems provide unique, personalized data for each patient to be used for optimizing outcomes. An acceleration sensor mounted on an artery is used for blood pressure measurement. Coupling a pressure transducer to the right ventricle (RV) lead of a pacemaker or defibrillator helps in continuous intracardiac pressure monitoring. Implantable chemical sensors are employed for real-time monitoring of clinically important species, e.g., blood gas measurements (pH, pO2, and pCO2). Subcutaneously implanted enzymatic glucose sensors enable continuous glucose monitoring. Single-walled carbon nanotubes (SWCNTs) encased in alginate work as inflammation sensors, which can be implanted for detection of nitric oxide.


Blood pressure sensor Accelerometer SAW sensor Foreign body response Oxygen shortfall Enzyme Blood gas sensor Diabetes Artificial pancreas Glucose biosensor Inflammation sensor 


  1. 1.
    Puers R (2005) Implantable sensor systems. DISens symposium-book 2005, 14 pages. Accessed 31 July 2015
  2. 2.
    Potkay JA (2008) Long term, implantable blood pressure monitoring systems. Biomed Microdevices 10:379–392CrossRefGoogle Scholar
  3. 3.
    Chatzandroulis S, Tsoukalas D, Neukomm PA (2000) A miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications. J Microelectromech Syst 9(1):18–23CrossRefGoogle Scholar
  4. 4.
    Cleven NJ, Isfort P, Penzkofer T et al (2014) Wireless blood pressure monitoring with a novel implantable device: long-term in vivo results. Cardiovasc Int Radiol. doi  10.1007/s00270-014-0842-0, Springer, p. 1–9
  5. 5.
    Theodor M, Fiala J, Ruh D et al (2013) W1C.002: Implantable accelerometer for determination of blood pressure. Transducers, Barcelona, Spain, 16–20 June 2013, p. 1659–1662Google Scholar
  6. 6.
    Theodor M, Ruh D, Förster K et al (2013) Implantable acceleration plethysmography for blood pressure determination. 35th Annual International Conference of the IEEE EMBS Osaka, Japan, 3–7 July 2013, pp 4038–4041Google Scholar
  7. 7.
    Theodor M, Fiala J, Ruh D et al (2014) Implantable accelerometer system for the determination of blood pressure using reflected wave transit time. Sensors Actuators A Phys 206:151–158CrossRefGoogle Scholar
  8. 8.
    Liang B, Fang L, Tu CL et al (2011) A novel implantable saw sensor for blood pressure monitoring. Transducers’ 11, Beijing, China, 5–9 June 2011, p. 2184–2187Google Scholar
  9. 9.
    Ye X, Fang L, Liang B et al (2011) Studies of a high-sensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sensors Actuators A Phys 169:74–82CrossRefGoogle Scholar
  10. 10.
    Murphy OH, Bahmanyar MR, Borghi A et al (2013) Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor. Biomed Microdevices 15:737–749CrossRefGoogle Scholar
  11. 11.
    Vaddiraju S, Tomazos I, Burgess DJ et al (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565CrossRefGoogle Scholar
  12. 12.
    Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) Application of polyanion/Fe3+ multilayered membranes in prevention of biosensor mineralization. J Macromol Sci Pure Appl Chem A39(10):1207–1222CrossRefGoogle Scholar
  13. 13.
    Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2(6):1003–1015CrossRefGoogle Scholar
  14. 14.
    Ishihara K, Tanaka S, Furukawa N et al (1996) Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. 1. Molecular design of polymeric additives and their functions. J Biomed Mater Res 32(3):391–399CrossRefGoogle Scholar
  15. 15.
    Vaddiraju S, Singh H, Burgess DJ et al (2009) Enhanced glucose sensor linearity using poly(vinyl alcohol) hydrogels. J Diabetes Sci Technol 1(3):863–874CrossRefGoogle Scholar
  16. 16.
    Yu B, Moussy Y, Moussy F (2005) Coil-type implantable glucose biosensor with excess enzyme loading. Front Biosci 10:512–520CrossRefGoogle Scholar
  17. 17.
    House JL, Anderson EM, Ward WK (2007) Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: a one-year study. J Diabetes Sci Technol 1(1):18–27CrossRefGoogle Scholar
  18. 18.
    Lu D, Cardiel J, Cao G et al (2010) Nanoporous scaffold with immobilized enzymes during flow-Induced gelation for sensitive H2O2 biosensing. Adv Mater 22(25):2809–2813CrossRefGoogle Scholar
  19. 19.
    Schlosser K, Li Y (2009) Biologically inspired synthetic enzymes made from DNA. Chem Biol 16(3):311–322CrossRefGoogle Scholar
  20. 20.
    Dai Z, Liu S, Bao J et al (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15(17):4321–4326CrossRefGoogle Scholar
  21. 21.
    Frost MC, Meyerhoff ME (2002) Implantable chemical sensors for real-time clinical monitoring: progress and challenges. Curr Opin Chem Biol 6:633–641CrossRefGoogle Scholar
  22. 22.
    Rolfe P (1990) In vivo chemical sensors for intensive-care monitoring. Med Biol Eng Comput 28:B34–B47CrossRefGoogle Scholar
  23. 23.
    Meruva RK, Meyerhoff ME (1998) Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide. Biosens Bioelectron 13:201–212CrossRefGoogle Scholar
  24. 24.
    Espadas-Torre C, Oklejas V, Mowery K et al (1997) Thromboresistant chemical sensors using combined nitric oxide release/ion sensing polymeric films. J Am Chem Soc 119:2321–2322CrossRefGoogle Scholar
  25. 25.
    Telting-Diaz M, Collison ME, Meyerhoff ME (1994) Simplified dual lumen catheter design for simultaneous potentiometric monitoring of carbon dioxide and pH. Anal Chem 66:576–583CrossRefGoogle Scholar
  26. 26.
    Venkatesh B, Clutton-Brock TH, Hendry SP (1995) Continuous measurement of blood gases using a combined electrochemical and spectrophotometric sensor. J Med Eng Technol 18:165–168CrossRefGoogle Scholar
  27. 27.
    Coule LW, Truemper EJ, Steinhart CM (2001) Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients. Crit Care Med 29:420–426CrossRefGoogle Scholar
  28. 28.
    Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility—a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63CrossRefGoogle Scholar
  29. 29.
    Lisman T, Weeterings C, de Groot PG (2005) Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10:2504–2517CrossRefGoogle Scholar
  30. 30.
    Wu Y, Rojas AP, Griffith GW et al (2007) Improving blood compatibility of intravascular oxygen sensors via catalytic decomposition of s-nitrosothiols to generate nitric oxide in situ. Sensors Actuators B Chem 121(1):36–46CrossRefGoogle Scholar
  31. 31.
    Ricotti L, Assaf T, Dario P et al (2013) Wearable and implantable pancreas substitutes. J Artif Organs 16:9–22CrossRefGoogle Scholar
  32. 32.
    Gough DA, Armour JC (1995) Development of the implantable glucose sensor: what are the prospects and why is it taking so long? Diabetes 44:1005–1009CrossRefGoogle Scholar
  33. 33.
    Updike SJ, Shults MC, Gilligan BJ et al (2000) A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetic Care 23(2):208–214CrossRefGoogle Scholar
  34. 34.
    Renard E (2002) Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2:708–716CrossRefGoogle Scholar
  35. 35.
    Iverson NM, Barone PW, Shandell M et al (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873–880CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinod Kumar Khanna
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations