Skip to main content

Stem Cell Therapies for Cardiac Regeneration: Current Burden—Future Directions

  • Chapter
  • First Online:
  • 1025 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Although treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries, novel therapeutic strategies are required to preserve cardiac function and improve clinical outcomes in patients with ischemic heart disease. Transplantation of stem/progenitor cells have been considered alternative treatments for heart repair, although several issues have been raised from recent findings that stem cell therapy does not -or not yet in its current form—lead to massive muscle regeneration. In fact, after the modest successes of the early clinical trials, research is now exploring the benefits of enhanced stem cell therapy. In this chapter, we will first summarize the most relevant results from clinical trials using stem cells to treat cardiovascular diseases. In this chapter we will critically review the results from the clinical trials so far performed with respect to the use of stem/progenitor cells in cardiac regeneration, and discuss current controversies, unresolved issues, challenges. Finally we will discus novel promising therapeutic strategies, such as stem cell rejuvenation, aimed at increasing the success rate of stem cell therapies for cardiovascular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Assmus B, Rolf A et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96

    Article  PubMed  Google Scholar 

  • Bolli R, Chugh AR et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Borillo GA, Mason M et al (2010) Pim-1 kinase protects mitochondrial integrity in cardiomyocytes. Circ Res 106(7):1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh AR, Beache GM et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–S64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11(12):2260–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrester JS, Price MJ et al (2003) Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 108(9):1139–1145

    Article  PubMed  Google Scholar 

  • Go AS, Mozaffarian D et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    Article  PubMed  Google Scholar 

  • Issa JP (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124(1):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan HM, Wei MF et al (2011) The use of polyethylenimine-DNA to topically deliver hTERT to promote hair growth. Gene Ther 19(1):86–93

    Article  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA et al (2014) The hallmarks of aging. Cell 153(6):1194–1217

    Article  Google Scholar 

  • Madonna R, Wu D et al (2012) Myocardin-A enhances expression of promyogenic genes without depressing telomerase activity in adipose tissue-derived mesenchymal stem cells. Int J Cardiol 167(6):2912–2921

    Article  PubMed  Google Scholar 

  • Madonna R, Taylor DA et al (2013) Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 113(7):902–914

    Article  CAS  PubMed  Google Scholar 

  • Makkar RR, Smith RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirotsou M, Jayawardena TM et al (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289

    Article  CAS  PubMed  Google Scholar 

  • Mohsin S, Khan M et al (2012) Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol 60(14):1278–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsin S, Khan M et al (2013) Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res 113(10):1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemir M, Metrich M et al (2014) The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J 35(32):2174–2185

    Article  CAS  PubMed  Google Scholar 

  • Pavo N, Charwat S et al (2014) Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J Mol Cell Cardiol 75C:12–24

    Article  Google Scholar 

  • Perin EC, Dohmann HF et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18):2294–2302

    Article  PubMed  Google Scholar 

  • Perin EC, Sanz-Ruiz R et al (2014) Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 168(1):88–95, e2

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Duan Z et al (2011) Telomerase reverse transcriptase upregulation attenuates astrocyte proliferation and promotes neuronal survival in the hypoxic-ischemic rat brain. Stroke 42(12):3542–3550

    Article  CAS  PubMed  Google Scholar 

  • Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148(1–2):46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando TA, Wyss-Coray T (2014) Stem cells as vehicles for youthful regeneration of aged tissues. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S39–S42

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohani L, Johnson AA et al (2014) The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell 13(1):2–7

    Article  CAS  PubMed  Google Scholar 

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer A, Zwadlo C et al (2011) Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial—an echocardiographic study. Eur J Echocardiogr 11(2):165–171

    Article  Google Scholar 

  • Sharma R, Raghubir R (2007) Stem cell therapy: a hope for dying hearts. Stem Cells Dev 16(4):517–536

    Article  CAS  PubMed  Google Scholar 

  • Smits AM, van Laake LW et al (2009) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Taylor DA, Atkins BZ et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933

    Article  CAS  PubMed  Google Scholar 

  • Traverse JH, Henry TD et al (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308(22):2380–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traverse JH, Henry TD et al (2013) One-year follow-up of intracoronary stem cell delivery on left ventricular function following ST-elevation myocardial infarction. JAMA 311(3):301–302

    Article  Google Scholar 

  • van Laake LW, Passier R et al (2009) Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res 3(2–3):106–112

    Article  PubMed  Google Scholar 

  • Wang B, Miyagoe-Suzuki Y et al (2011) Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle-derived fibroblasts of mdx mice at different ages. PLoS Curr 3, RRN1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Willerson JT, Perin EC et al (2010) Intramyocardial injection of autologous bone marrow mononuclear cells for patients with chronic ischemic heart disease and left ventricular dysfunction (First Mononuclear Cells injected in the US [FOCUS]): rationale and design. Am Heart J 160(2):215–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu KH, Mo XM et al (2011) Stem cell engraftment and survival in the ischemic heart. Ann Thorac Surg 92(5):1917–1925

    Article  PubMed  Google Scholar 

  • Yang J, Bucker S et al (2012) Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res 96(2):276–285

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Borikova AL et al (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A 111(4):1403–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann WH, Didie M et al (2006) Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71(3):419–429

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalinda Madonna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Madonna, R. (2016). Stem Cell Therapies for Cardiac Regeneration: Current Burden—Future Directions. In: Madonna, R. (eds) Stem Cells and Cardiac Regeneration. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-25427-2_11

Download citation

Publish with us

Policies and ethics