Skip to main content

Electronic Device Approach Using Photosynthesis Assembly of Photosynthetic Protein Complexes for the Development of Nanobiodevices

  • Chapter
  • First Online:
  • 2964 Accesses

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

Photosynthetic light-harvesting polypeptide/pigment complexes (LH ) play an essential role in the primary process of an efficient solar energy-transduction in photosynthetic membrane. In our research, we aim to use the LH complex and control its direction and orientation on electrodes for the development of nanobiodevices from solar to fuel. Specifically, we focus on the construction of an array of the LH on electrodes using a modified photosynthetic protein complex prepared from modern biosynthetic manufacturing methods and in lipid membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  2. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  Google Scholar 

  3. Vos MH, Rappaport F (1993) Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363:320–325

    Article  Google Scholar 

  4. Fleming GR, Martin JL, Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333:190–192

    Article  Google Scholar 

  5. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 377:517–521

    Google Scholar 

  6. Roszak AW, Howard TD, Southall J, Gardiner AT; Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Google Scholar 

  7. Scheuring S, Gonçalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358:83–96

    Article  Google Scholar 

  8. Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309:484–487

    Article  Google Scholar 

  9. Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle RA, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062

    Article  Google Scholar 

  10. Stamouli A, Frenken JWM, Oosterkamp TH, Cogdell RJ, Aartsma TJ (2004) The electron conduction of photosynthetic protein complexes embedded in a membrane. FEBS Lett 560:109–114

    Article  Google Scholar 

  11. Bumm LA (2008) Measuring molecular junctions: what is the standard? ACS Nano 2:403–407

    Article  Google Scholar 

  12. Joachim C, Ratner MA (2005) Molecular electronics special feature—perspective, molecular electronics special feature: molecular electronics: some views on transport junctions and beyond. Proc Natl Acad Sci USA 102:8801–8808

    Article  Google Scholar 

  13. Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) Physical sciences—chemistry—molecular electronics special feature, molecular electronics special feature: a single-molecule diode. Proc Natl Acad Sci USA 102:8815–8820

    Article  Google Scholar 

  14. Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang L, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang S, Baldo M (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4:1079–1083

    Google Scholar 

  15. Lebedev N, Trammell SA, Spano A, Lukashev E, Griva I, Schnur J (2006) Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. J Am Chem Soc 128:12044–12045

    Article  Google Scholar 

  16. Trammel SA, Griva I, Spano A, Tsoi S, Tender LM, Schnur S, Lebedev M (2004) Effects of distance and driving force on photoinduced electron transfer between photosynthetic reaction centers and gold electrodes. J Phys Chem C 111:17122–17130

    Google Scholar 

  17. Lebedev N, Trammel SA, Tsoi S, Spano A, Kim JH, Xu J, Twigg ME, Schnur JM (2008) Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 24:8871–8876

    Article  Google Scholar 

  18. Lee I, Lee JW, Greenbaum E (2008) Biomolecular electronics: vectorial arrays of photosynthetic reaction centers. Phys Rev Lett 79:3294–3297

    Article  Google Scholar 

  19. Ron I, Pecht I, Sheves M, Cahen D (2010) Proteins as solid-state electronic conductors. Acc Chem Res 43:945–953

    Article  Google Scholar 

  20. den Hollander M-J, Magis JG, Fuchsenberger P, Aartsma TJ, Jones MR, Frese RN (2011) Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. Langmuir 27:10282–10294

    Article  Google Scholar 

  21. Ogawa M, Kanda R, Dewa T, Iida K, Nango M (2002) Molecular assembly of light-harvesting antenna complex on ITO electrode. Chem Lett 31:466–467

    Article  Google Scholar 

  22. Nagata M, Nango M, Kashiwada A, Yamada S, Ito S, Sawa N, Ogawa M, Iida K, Kurono Y, Ohtsuka T (2003) Construction of photosynthetic antenna complex using light-harvesting polypeptide-α from photosynthetic bacteria, R. rubrum with Zinc Substituted Bacteriochlorophyll a. Chem Lett 32:216–217

    Google Scholar 

  23. Ogawa M, Shinohara K, Nakamura Y, Suemori Y, Nagata M, Iida K, Gardiner AT, Cogdell RJ, Nango M (2004) Self-assembled monolayer of light-harvesting 1 and reaction center (LH1-RC) complexes isolated from rhodospirillum rubrum on an amino-terminated ITO electrode. Chem Lett 33:772–773

    Article  Google Scholar 

  24. Iida K, Inagaki J, Shinohara K, Suemori Y, Ogawa M, Dewa T, Nango M (2005) Near-IR absorption and fluorescence spectra and AFM observation of the light-harvesting 1 complex on a mica substrate refolded from the subunit light-harvesting 1 complexes of photosynthetic bacteria Rhodospirillum rubrum. Langmuir 21:3069–3075

    Article  Google Scholar 

  25. Dewa T, Yamada T, Ogawa M, Sugimoto M, Mizuno T, Yoshida K, Nakao Y, Kondo M, Iida K, Yamashita K, Tanaka T, Nango M (2005) Design and expression of cysteine-bearing hydrophobic polypeptides and their self-assembling properties with bacteriochlorophyll a derivatives as a mimic of bacterial photosynthetic antenna complexes. effect of steric confinement and orientation of the polypeptides on the pigment/polypeptide assembly process. Biochemistry 44:5129–5139

    Article  Google Scholar 

  26. Dewa T, Sugiura R, Suemori Y, Sugimoto M, Takeuchi T, Hiro A, Iida K, Gardiner AT, Cogdell RJ, Nango M (2006) Lateral organization of a membrane protein in a supported binary lipid domain: direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy. Langmuir 22:5412–5418

    Article  Google Scholar 

  27. Kondo M, Nakamura Y, Fujii K, Nagata M, Suemori Y, Dewa T, Iida K, Gardiner AT, Cogdell RJ, Nango M (2007) Self-assembled monolayer of light-harvesting core complexes from photosynthetic bacteria on a gold electrode modified with alkanethiols. Biomacromolecules 8:2457–2463

    Article  Google Scholar 

  28. Mikayama T, Iida K, Suemori Y, Dewa T, Miyashita T, Nango M, Gardiner AT (2008) The electronic behavior of a photosynthetic reaction center monitored by conductive atomic force microscopy. J Nanosci Nanotechnol 8:1–11

    Article  Google Scholar 

  29. Kondo M, Iida K, Dewa T, Tanaka H, Ogawa T, Nagashima S, Nagashima KVP, Shimada K, Hashimoto H, Gardiner AT, Cogdell RJ, Nango M (2012) Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules 13:432–438

    Article  Google Scholar 

  30. Sumino A, Dewa T, Takeuchi T, Sugiura R, Sasaki N, Misawa N, Tero R, Urisu T, Gardiner AT, Cogdell RJ, Hashimoto H, Nango M (2011) Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis. Biomacromolecules 12:2850–2858

    Article  Google Scholar 

  31. Sumino A, Dewa T, Kondo M, Morii T, Hashimoto H, Gardiner AT, Cogdell RJ, Nango M (2011) Selective assembly of photosynthetic antenna proteins into a domain-structured lipid bilayer for the construction of artificial photosynthetic antenna systems: structural analysis of the assembly using surface plasmon resonance and atomic force microscopy. Langmuir 27:1092–1099

    Article  Google Scholar 

  32. Dewa T, Sugiura R, Suemori Y, Sugimoto M, Takeuchi T, Hiro A, Iida K, Gardiner AT, Cogdell RJ, Nango M (2006) Lateral organization of a membrane protein in a supported binary lipid domain: direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy. Langmuir 22:5412–5418

    Article  Google Scholar 

  33. Yajima S, Furukawa RA, Nagata M, Sakai S, Kond M, Iida K, Dewa T, Nango M (2012) Two-dimensional patterning of bacterial light-harvesting 2 complexes on lipid-modified gold surface. Appl Phys Lett 100:233701

    Article  Google Scholar 

  34. Sumino A, Dewa T, Sasaki N, Kondo M, Nango M (2013) Electron conduction and photocurrent generation of light-harvesting/reaction center core complex in lipid membrane environments. J Phys Chem Lett 4:1087–1092

    Article  Google Scholar 

  35. Sumino A, Dewa T, Noji T, Nakano Y, Watanabe N, Hildner R, Bösch N, Köhler J, Nango M (2013) Phoospholipids modulate self-assembled nanostructure and energy transfer of the light-harvesting complex 2 in lipid bilayers. J Phys Chem B 117:10395–10404

    Article  Google Scholar 

  36. Dewa T, Sumino A, Watanabe N, Noji T, Nango M (2013) Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes. Chem Phys 419:200–204

    Article  Google Scholar 

  37. Yoneda Y, Noji T, Katayama T, Mizutani N, Komori D, Nango M, Miyasaka H, Itoh S, Nagasawa Y, Dewa T (2015) Extension of light-harvesting ability of photosynthetic light-harvesting complex 2 (LH2) through ultrafast energy transfer from covalently attached artificial chromophores. J Am Chem Soc 137:13121–13129

    Google Scholar 

Download references

Acknowledgements

The authors thank to Dr. Ayumi Sumino and Dr. Kouji Iida for performing experiments and helpful discussions.  M.N. and T.D. thank AOARD for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Nango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kondo, M., Dewa, T., Nango, M. (2016). Electronic Device Approach Using Photosynthesis Assembly of Photosynthetic Protein Complexes for the Development of Nanobiodevices. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics