Skip to main content

Recent Understanding on the Photosystem of Purple Photosynthetic Bacteria

  • Chapter
  • First Online:
Book cover Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

Bacterial photosynthesis provides a simplified model system ideally for studying the basic mechanism of light-energy harvest and conversion. The early events in this process are carried out by two distinct components, the light-harvesting (LH) complexes and the reaction center (RC) . The LH complexes in purple photosynthetic bacteria are classified into two major types, the core LH1 complex that surrounds the RC and the peripheral LH2 complex that exists around the LH1. In addition to light-harvesting, the LH1 also plays a role in quinone (Q) transport between the RC and quinone pool in the cell membrane. While several high-resolution structures are known for the RC and LH2, the structures of LH1 remained at low resolutions. Here, the crystal structure of a LH1-RC complex from thermophilic purple sulfur bacterium Thermochromatium tepidum is described. This complex is characterized by an enhanced thermostability and an absorption maximum at 915 nm for the LH1. These properties have been shown to be regulated by Ca2+ ions. The structure reveals a closed arrangement of LH1 complex around the RC, and the LH1 BChl a molecules form a partially overlapping ring with a shorter Mg–Mg spacing compared with that of B850 in LH2. Structural evidence is for the first time provided for the possible ubiquinone pathway in the closed LH1 complex. The Ca2+-binding sites are identified. Molecular mechanisms of quinone transport, Ca2+-regulation and interaction between LH1 and RC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  Google Scholar 

  2. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734

    Article  Google Scholar 

  3. Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proc Natl Acad Sci USA 97:13561–13566

    Article  Google Scholar 

  4. McDermott G, Prince DM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaac NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  Google Scholar 

  5. Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800-B850) from Rhodospirillum molischianum. Structure 4:581–597

    Article  Google Scholar 

  6. McLuskey K, Prince SM, Cogdell RJ, Isaac NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789

    Article  Google Scholar 

  7. Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638

    Google Scholar 

  8. Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21:3927–3935

    Article  Google Scholar 

  9. Scheuring S, Seguin J, Marco S, Levy D, Robert B, Rigaud J-L (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA 100:1690–1693

    Article  Google Scholar 

  10. Scheuring S, Francia F, Busselez J, Melandris BA, Rigaud J-L, Levy D (2004) Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J Biol Chem 279:3620–3626

    Article  Google Scholar 

  11. Jungas C, Ranck J-L, Rigaud J-L, Joliot P, Vermeglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18:534–542

    Article  Google Scholar 

  12. Qian P, Hunter CN, Bullough PA (2005) The 8.5 Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349:948–960

    Article  Google Scholar 

  13. Scheuring S, Busselez J, Levy D (2005) Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 280:1426–1431

    Article  Google Scholar 

  14. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaac NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  Google Scholar 

  15. Arid A, Wrachtrup J, Schulten K, Tietz C (2007) Possible pathway for ubiquinone shuttling in Rhodospirillum rubrum revealed by molecular dynamics simulation. Biophys J 92:23–33

    Article  Google Scholar 

  16. Niwa S, Yu L-J, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z-Y, Miki K (2014) Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–232

    Article  Google Scholar 

  17. Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang Z-Y (2007) Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim Biophys Acta 1767:1057–1063

    Article  Google Scholar 

  18. Kimura Y, Hirano Y, Yu L-J, Suzuki H, Kobayashi M, Wang Z-Y (2008) Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem 283:13867–13873

    Article  Google Scholar 

  19. Kimura Y, Yu L-J, Hirano Y, Suzuki H, Wang Z-Y (2009) Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem 284:93–99

    Article  Google Scholar 

  20. Germeroth L, Lottspeich F, Robert B, Michel H (1993) Unexpected similarities of the B800-850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. Biochemistry 32:5615–5621

    Article  Google Scholar 

  21. Cogdell RJ, Howard TD, Isaac NW, McLuskey K, Gardiner AT (2002) Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth Res 74:135–141

    Article  Google Scholar 

  22. Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang J-P, Wang Z-Y, Ohno T (1817) Metal cations modulate the bacteriochlorophyll-protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochim Biophys Acta 1022–1029:2012

    Google Scholar 

  23. Rücker O, Köhler A, Behammer B, Sichau K, Overmann J (2012) Puf operon sequences and inferred structures of light-harvesting complexes of three closely related Chromatiaceae exhibiting different absorption characteristics. Arch Microbiol 194:123–134

    Article  Google Scholar 

  24. Hu X, Schulten K (1998) Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys J 75:683–694

    Article  Google Scholar 

  25. Wang Z-Y, Shimonaga M, Suzuki H, Kobayashi M, Nozawa T (2003) Purification and characterization of the polypeptides of core light-harvesting complexes from purple sulfur bacteria. Photosynth Res 78:133–141

    Article  Google Scholar 

  26. Yu L-J, Kato S, Wang Z-Y (2010) Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynth Res 106:215–220

    Article  Google Scholar 

  27. Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. II. A study of PufX- membranes. J Biol Chem 280:11214–11223

    Article  Google Scholar 

  28. Fleming GR, van Grondelle R (1997) Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol 7:738–748

    Article  Google Scholar 

  29. Robert B, Cogdell RJ, von Grondelle R (2003) The light-harvesting system of purple bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 169–194

    Chapter  Google Scholar 

  30. Ma F, Kimura Y, Zhao X-H, Wu Y-S, Wang P, Fu L-M, Wang Z-Y, Zhang J-P (2008) Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Biophys J 95:3349–3357

    Article  Google Scholar 

  31. Beekman LMP, van Mourik F, Jones MR, Visser M, Hunter CN, van Grondelle R (1994) Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: influence of the charge separation rate and consequences for the rate-limiting step in the light-harvesting process. Biochemistry 33:3143–3147

    Article  Google Scholar 

  32. van Grondelle R, Novoderezhkin VI (2009) Spectroscopy and dynamics of excitation transfer and trapping in purple bacteria. In: Hunter CN, Daldal F, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 231–252

    Google Scholar 

  33. Woodbury NW, Allen JF (1995) The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CD (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 527–557

    Google Scholar 

  34. Parson WW, Warshel A (2009) Mechanism of charge separation in purple bacterial reaction centers. In: Hunter CN, Daldal F, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 355–377

    Google Scholar 

  35. Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN, Sundström V (1995) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA 92:12333–12337

    Article  Google Scholar 

  36. Law CJ, Cogdell RJ (1998) The effect of chemical oxidation on the fluorescence of the LH1(B880) complex from the purple bacterium Rhodobium marinum. FEBS Lett 432:27–30

    Article  Google Scholar 

  37. Wang-Otomo Z-Y (2014) The frontiers in photosynthesis research. NTS Inc., Tokyo (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Y. Wang-Otomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang-Otomo, ZY. (2016). Recent Understanding on the Photosystem of Purple Photosynthetic Bacteria. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics