Skip to main content

Solar Hydrogen Production on Photocatalysis-Electrolysis Hybrid System Using Redox Mediator and Porous Oxide Photoelectrodes

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

  • 3101 Accesses

Abstract

Solar hydrogen production from water using semiconductor photocatalysts and photoelectrodes is one of the important artificial photosynthesis technologies to achieve a sustainable hydrogen society based on solar energy conversion. It is necessary to develop new systems with practical efficiency and significantly simpler and lower cost technologies than those that combine “photovoltaic generation and electrolysis”. A photocatalysis-electrolysis hybrid system is a breakthrough system that solves almost all the disadvantages of conventional photocatalysis reactions by replacing the photocatalysis reaction on the hydrogen-production side of the Z-scheme reaction with electrolysis. Solar splitting of water using porous oxide photoanodes prepared by simple wet process is also a promising system to produce low cost hydrogen. It should be noted that maintaining the external bias at 1.23 V or less means that the apparent electrolytic efficiency can be 100 % or higher in the photoanode system that uses light energy as well as in the photocatalysis-electrolysis hybrid system .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sayama K, Arakawa H, Okabe K, Kusama H (2001) Jpn Patent 3198298; U.S. Patent 09/028495, 1998

    Google Scholar 

  2. Miseki Y, Kusama H, Sugihara H, Sayama K (2010) Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe(III) ion reduction under visible light. J Phys Chem Lett 1:1196–1200

    Article  Google Scholar 

  3. Miseki Y, Sayama K (2014) High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO3. RSC Adv. 4:8308–8316

    Article  Google Scholar 

  4. Sayama K, Miseki Y (2014) Research and development of solar hydrogen production, Toward the realization of ingenious photocatalysis-electrolysis hybrid system. Synthesiology 7:79–91

    Article  Google Scholar 

  5. James BD, Baum GN, Perez J, Baum KN (2009) Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production, DOE Report (2009), Contract No. GS-10F-009J

    Google Scholar 

  6. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277:387–391

    Article  Google Scholar 

  7. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun 2416–2417

    Google Scholar 

  8. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  9. Mizuta S, Kondo W, Fujii K, Iida H, Isshiki S, Noguchi H, Kikuchi T, Sue H, Sakai K (1991) Hydrogen production from hydrogen sulfide by the Fe-Cl hybrid process. Ind Eng Chem Res 30:1601–1608

    Article  Google Scholar 

  10. Miseki Y, Kusama H, Sugihara H, Sayama K (2010) Significant effects of anion in aqueous reactant solution on photocatalytic O2 evolution and Fe(III) reduction. Chem Lett 39:846–847

    Article  Google Scholar 

  11. Miseki Y, Kusama H, Sayama K (2012) Photocatalytic energy storage over surface-modified WO3 using V5+/V4+ redox mediator. Chem Lett 41:1489–1491

    Article  Google Scholar 

  12. Miseki Y, Fujiyoshi S, Gunji T, Sayama K (2013) Photocatalytic water splitting under visible light utilizing I3 /I and IO3 /I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal Sci Technol 3:1750–1756

    Article  Google Scholar 

  13. Asaoka Y, Uotani M (2003) Feasibility study on hydrogen production with off-peak electricity—evaluation of the effects of availability and electric power transmission. CRIEPI Research Report T02039:1–16

    Google Scholar 

  14. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  15. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  16. Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215

    Article  Google Scholar 

  17. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  Google Scholar 

  18. Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 53:3–16

    Article  Google Scholar 

  19. Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303

    Article  Google Scholar 

  20. Cesar I, Kay A, Martinez JAG, Grätzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc 128:4582–4583

    Article  Google Scholar 

  21. Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721

    Article  Google Scholar 

  22. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408

    Article  Google Scholar 

  23. Hisatomi T, Formal FL, Cornuz M, Brillet J, Tétreault N, Sivula K, Grätzel M (2011) Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ Sci 4:2512–2515

    Article  Google Scholar 

  24. Mao A, Park NG, Han GY, Park JH (2011) Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Nanotechnology 22:175703–175709

    Article  Google Scholar 

  25. Brillet J, Cornuz M, Formal FL, Yum JH, Grätzel M, Sivula K (2010) Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J Mater Res 25:17–24

    Article  Google Scholar 

  26. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Solar Energy Mater Solar Cells 92:374–384

    Article  Google Scholar 

  27. Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–2909

    Google Scholar 

  28. Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    Article  Google Scholar 

  29. Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933

    Article  Google Scholar 

  30. Chatchai P, Murakami Y, Kishioka S, Nosaka AY, Nosaka Y (2009) Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electrochim Acta 54:1147–1152

    Article  Google Scholar 

  31. Liang Y, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115:17594–17598

    Google Scholar 

  32. Chatchai P, Murakami Y, Kishioka S, Nosaka AY, Nosaka Y (2008) FTO/SnO2/BiVO4 composite photoelectrode for water oxidation under visible light irradiation. Electrochem Solid State Lett 11:H160–H163

    Article  Google Scholar 

  33. Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and effect of Ag ion treatment. J Phys Chem B 110:11352–11360

    Article  Google Scholar 

  34. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133:18370–18377

    Article  Google Scholar 

  35. Jeon TH, Choi W, Park H (2011) Cobalt-phosphate complexes catalyzed the photoelectrochemical water oxidation of BiVO4 electrodes. Phys Chem Chem Phys 13:21392–21401

    Article  Google Scholar 

  36. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4:5028–5034

    Article  Google Scholar 

  37. Luo W, Li Z, Yu T, Zou Z (2012) Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4. J Phys Chem C 116:5076–5081

    Article  Google Scholar 

  38. Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192

    Article  Google Scholar 

  39. Jia Q, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. PANS 109:11564–11569

    Article  Google Scholar 

  40. Sayama K, Wang N, Miseki Y, Kusama H, Onozawa-Komatsuzaki N, Sugihara H (2011) Effect of carbonate ions on the photooxidation of water over porous BiVO4 film photoelectrode under visible light. Chem Lett 39:17–19

    Article  Google Scholar 

  41. Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48:3833–3835

    Article  Google Scholar 

  42. Saito R, Miseki Y, Sayama K (2013) Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting. J Photochem Photobiol A: Chem 258:58–60

    Google Scholar 

  43. Fujimoto I, Wang N, Saito R, Miseki Y, Gunji T, Sayama K (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrogen Energy 39:2454–2461

    Article  Google Scholar 

  44. Abdi F, Han L, Smets A, Zeman M, Dam B, Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature Commun 4:2195–2201

    Article  Google Scholar 

  45. Kim T, Choi K (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994

    Article  Google Scholar 

  46. Shi X, Choi I, Zhang K, Kwon J, Kim D, Lee J, Oh S, Kim J, Park J (2014) Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun 5:5775–5782

    Article  Google Scholar 

  47. Arai T, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J Comb Chem 9:574–581

    Article  Google Scholar 

  48. Kusama H, Wang N, Miseki Y, Sayama K (2010) Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J Comb Chem 12:356–362

    Article  Google Scholar 

  49. Sartoretti CJ, Alexander BD, Solarska R, Rutkowska IA, Augustynski J, Cerny R (2005) Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J Phys Chem B 109:13685–13692

    Article  Google Scholar 

  50. Arai T, Yanagida M, Konishi T, Iwasaki Y, Sugihara H, Sayama K (2007) Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation. J Phys Chem C 111:7574–7577

    Article  Google Scholar 

  51. Miseki Y, Majima Y, Gunji T, Sayama K (2014) Codoping effect of Sr and Ti for α-Fe2O3 photocatalyst on water oxidation utilizing IO3 as a reversible redox ion under visible light. Chem Lett 43:1560–1562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Sayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sayama, K. (2016). Solar Hydrogen Production on Photocatalysis-Electrolysis Hybrid System Using Redox Mediator and Porous Oxide Photoelectrodes. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics