Skip to main content

Photoelectrochemical Water Splitting Using Photovoltaic Materials

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

In this chapter, we will focus on high performance PV (photovoltaic)-grade thin film materials for photoelectrochemical (PEC) water splitting applications. Using techno-economic analysis tools, we will show that achieving a high solar-to-hydrogen (STH) efficiency is by far the most important device attribute for affordable PEC hydrogen production. We will then introduce the concept of multi-junction PEC devices and establish their theoretical STH upper limit. Finally, we will present the PEC performances of one specific PV material with high potential for PEC hydrogen production: the copper chalcopyrite class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  2. Braham RJ, Harris AT (2009) Ind Eng Chem Res 48:8890–8905

    Article  Google Scholar 

  3. Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625–627

    Google Scholar 

  4. Miller E, Marsen B, Paluselli D, Rocheleau R (2005) Electrochem Solid-State Lett 8:A247–A249

    Article  Google Scholar 

  5. Khaselev OK, Turner JA (1998) Science 280:425–427

    Article  Google Scholar 

  6. McCullagh C, Skillen N, Adams M, Robertson P (2011) J Chem Technol Biotechnol 86:1002–1017

    Article  Google Scholar 

  7. Chong MN, Jin B, Chow CW, Saint C (2010) Water Res 44:2997–3027

    Article  Google Scholar 

  8. King RR, Fetzer CM, Colter PC, Edmondson KM, Ermer JH, Cotal HL, Hojun Y, Stavrides AP, Kinsey G, Krut DD, Karam, NH (2002) PVSC 776–781

    Google Scholar 

  9. James BD, Baum GN, Perez J, Baum KN (2009) Technoeconomic analysis of PEC hydrogen production. Directed Technologies, Inc. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pec_technoeconomic_analysis.pdf

  10. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Jaramillo TF (2013) Energy Environ Sci 6:1983

    Article  Google Scholar 

  11. Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Energy Environ Sci 7:3264–3278

    Article  Google Scholar 

  12. http://www.hydrogen.energy.gov/h2a_prod_studies.html

  13. Dohrmann JK, Schaaf NS (1992) Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J Phys Chem 96:4558–4563

    Article  Google Scholar 

  14. Abdi FF, Van de Krol R (2012) J Phys Chem C 116(17):9398–9404

    Google Scholar 

  15. Gaillard N, Cole B, Marsen B, Kaneshiro J, Miller EL, Weinhardt L, Bär M, Heske C, Ahn K-S, Yan Y, Al-Jassim MM (2010) J Mater Res 25:45

    Article  Google Scholar 

  16. Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Nano Lett 11(11):4978–4984

    Google Scholar 

  17. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  Google Scholar 

  18. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) J J Appl Phys 40:561–563

    Article  Google Scholar 

  19. Huda MN, Yan Y, Moon C, Wei S, Jassim MM (2008) Phys Rev B 77:195102–195114

    Article  Google Scholar 

  20. Cole B, Marsen B, Miller EL, Yan Y, To B, Jones K, Ai-Jassim M (2008) J Phys Chem C 112:5213–5220

    Article  Google Scholar 

  21. D’Arienzo M, Siedl N, Sternig A, Scotti R, Morazzoni F, Bernardi J, Diwald OJ (2010) Phys Chem C 114:18067–18072

    Article  Google Scholar 

  22. Tokunaga S, Kato H, Kudo A (2001) Chem Mater 13:4624

    Article  Google Scholar 

  23. Abdi FF, Han L, Smets HM, Zeman M, Dand B, van de Krol R (2013) Nature Commun 4:2195

    Article  Google Scholar 

  24. Hardee KL, Bard AJ (1977) J Electrochem Soc 124:215

    Article  Google Scholar 

  25. Chen Z, Jaramillo TF, Deutsch TG, Shwarsctein AK, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3–16

    Article  Google Scholar 

  26. Dare-edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc, Faraday Trans 79:2027–2041

    Article  Google Scholar 

  27. Sivula K, Formal FL, Gratzel M (2011) ChemSusChem 18:432–449

    Article  Google Scholar 

  28. Vayssieres L, Sathe C, Butorin S, Shuh D, Nordgren J, Guo J (2005) J Adv Mater 17:2320–2323

    Article  Google Scholar 

  29. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nat Mater 10:456–461

    Article  Google Scholar 

  30. Gaillard N, Chang Y, Kaneshiro J, Deangelis A (2010) Miller EL Solar Hydrogen and Nanotechnology V. Proc SPIE 7770:77700 V–14

    Google Scholar 

  31. Lee WJ, Shinde PS, Go GH, Ramasamy E (2011) Int J Hydrogen 36:5262–5270

    Article  Google Scholar 

  32. Green MA (2009) Prog Photovoltaics 17:183

    Article  Google Scholar 

  33. Reece SY, Hamel JA, Thomas KS, Jarvi D, Esswein AJ, Nocera DG (2011) Science 334:645

    Article  Google Scholar 

  34. Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoonnad H, Karam N (2009) Energy Environ Sci 2:174–192

    Article  Google Scholar 

  35. Jackson P, Hariskos D, Pwalla M (2011) Prog Photovoltaics Res Appl 19:894

    Article  Google Scholar 

  36. Contreras M, Mansfield L, Egaas B, Li B, Romero M, Noufi R (2011) In: Proceeding of the 37th IEEE PVSC

    Google Scholar 

  37. Gaillard N, Prasher D, Kaneshiro J, Mallory S, Chong M (2013) MRS Online Proceedings Library 1558

    Google Scholar 

  38. Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K (2013) J Am Chem Soc 135:3733–3755

    Article  Google Scholar 

  39. Marsen B, Cole B, Miller EL (2008) Solar Mat Solar Cells 92:1054–1058

    Article  Google Scholar 

  40. Miller EL, Gaillard N, Kaneshiro J, DeAngelis A, Garland R (2010) Progress in new semiconductor materials classes for solar photoelectrolysis. Int J Energy Res 34:1215–1222

    Article  Google Scholar 

  41. Kelly NA, Gibson TL (2008) Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int J Hydrogen Energy 33:6420–6643

    Article  Google Scholar 

  42. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar Water Splitting Cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  43. Minggu LJ, Daud WRW, Kassim MB (2010) Int J Hydrogen Energy 35:5233

    Article  Google Scholar 

  44. Rocheleau R, Miller EL, Misra A (1998) Energy Fuels 12(1):3–10

    Article  Google Scholar 

  45. Jacobsson TJ, Fjällström V, Sahlberg M, Edvinsson T (2013) Energy Environ Sci 6:3676–3683

    Article  Google Scholar 

  46. Wang H, Deutsch T, Turner JA (2008) J Electrochem Soc 155:F91

    Article  Google Scholar 

  47. Ingler WB, Khan SUM (2006) Electrochem. Solid State Lett 9:G144–G146

    Article  Google Scholar 

  48. Luo J, Im JH, Mayer MT, Mayer M, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Han HJ, Gratzel M (2014) Science 345(6204)

    Google Scholar 

  49. Shockley W, Queisser H (1961) J Appl Phys 32:510–519

    Article  Google Scholar 

  50. Rocheleau RE, Miller EL (1997) Int J Hydrogen Energy 22:771–782

    Article  Google Scholar 

  51. Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) ChemSusChem 7:1372

    Article  Google Scholar 

  52. Akhavan VA, Goodfellow BW, Panthani MG et al (2012) J Solid State Chem 189:2–12

    Article  Google Scholar 

  53. Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156–E159

    Article  Google Scholar 

  54. Bär M, Bohne W, Rohrich J, Strub E, Lindner S, Lux-Steiner MC, Fischer ChH, Niesen TP, Karg F (2004) Appl Phys 96:3857

    Article  Google Scholar 

  55. Beck ME, Weiss T, Fischer D, Fiechter S, Jäger-Waldau A, Lux-Steiner M Ch (2000) Thin Solid Films 130–134

    Google Scholar 

  56. Kaneshiro J, Deangelis A, Gaillard N, Chang YC, Kowalczyk J, Miller E (2010) Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 002448–002451

    Google Scholar 

  57. Zhang L, Minegishi T, Kubota J, Domen K (2014) Phys Chem Chem Phys 16(13):6167–6174

    Article  Google Scholar 

  58. Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A (1997) Solar Mat Solar Cells 49:285

    Article  Google Scholar 

  59. Merdes S, Mainz R, Klaer J, Meeder A, Rodriguez-Alvarez H, Schock HW, Lux-Steiner MCh, Klenk R (2011) Solar Mat Solar Cells 95:864

    Article  Google Scholar 

  60. Mainz R, Klenk R, Lux-Steiner MCh (2007) Thin Solid Films 515:5934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gaillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaillard, N., Deangelis, A. (2016). Photoelectrochemical Water Splitting Using Photovoltaic Materials. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics