Skip to main content

CO2 Reduction Using an Electrochemical Approach from Chemical, Biological, and Geological Aspects in the Ancient and Modern Earth

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

The past few decades have witnessed significant advances in our understanding of the synthesis routes and development of electrocatalysts for the reduction of CO2 to hydrocarbons. It is also notable that the research field related to the Origin of Life theory starts to recognize the significance of electrochemical CO2 reduction by metal-sulfide minerals as the primary step for organic carbon synthesis. In this chapter, we describe recent progress in the development of catalysts for CO2 reduction in electrochemical systems, particularly from the viewpoint of the Origin of Life theory, and discuss the perspectives related to the evolutional origin of carbon monoxide dehydrogenases (CODHs), known as one of the most active natural enzymes for CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium C arboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144

    Google Scholar 

  2. Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA (2007) Rapid and efficient electrocatalytic CO2/CO Interconversions by Carboxydothermus hydrogenoformans CO Dehydrogenase I on an Electrode. J Am Chem Soc 129:10328–10329

    Google Scholar 

  3. Nitschke W, Russell MJ (2009) Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W Co, S and Se, forced life to emerge. J Mol Evol 69:481–496

    Article  Google Scholar 

  4. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article  Google Scholar 

  5. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    Article  Google Scholar 

  6. Royer E (1870) Reduction of carbonic acid into formic acid. C R Acad Sci 70:731–735

    Google Scholar 

  7. Coehn A, Jahn S (1904) Über elektrolytische Reduction der Kohlensäure. Ber dt Chem Ges 37:2836–2842

    Article  Google Scholar 

  8. Ehrenfeld R (1905) Zur elektrolytischen Reduction Kohlensäure. Ber dt Chem Ges 38:4138–4143

    Article  Google Scholar 

  9. Fischer F, Prziza O (1914) Über die elektrolytische Reduktion von unter Druck gelöstem Kohlendioxyd und Kohlenoxyd. Ber dt Chem Ges 47:256–260

    Article  Google Scholar 

  10. Rabinowitsch M, Maschowetz A (1930) Elektrochemische Gewinnung von Formiaten aus Kohlensäure. Z Elektrochem Angew 36:846–850

    Google Scholar 

  11. Van Rysselberghe P, Alkire GJ (1944) Polarographic reduction of Carbon Dioxide. J Am Chem Soc 66:1801

    Article  Google Scholar 

  12. Chechel PS, Antropov LI (1958) Electrochemical method for production of Sodium Formate from Carbon Dioxide and Sodium Amalgam. J Appl Chem 31:1846–1850

    Google Scholar 

  13. Ito K, Murata T, Ikeda S (1975) Electrochemical Reduction of Carbon Dioxide to Organic Compounds. Bull. Nagoya Inst. Tech. 27:209–214

    Google Scholar 

  14. Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous Hydrogen Carbonate Solution. Chem Lett 1695–1698

    Google Scholar 

  15. Hori Y, Wakabe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839

    Google Scholar 

  16. Nakato Y, Yano S, Yamaguchi T, Tsubomura H (1991) Reactions and mechanism of the electrochemical reduction of Carbon Dioxide on Alloyed Copper-Silver Electrodes. Denki Kagaku 59:491–498

    Google Scholar 

  17. Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150

    Article  Google Scholar 

  18. Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic Carbon Dioxide activation: the rate-determining step of Pyridinium-Catalyzed CO2 reduction. Chem Sus Chem 4:191–196

    Article  Google Scholar 

  19. Keith JA, Carter EA (2013) Electrochemical reactivities of Pyridinium in solution: consequences for CO2 reduction Mechanisms. Chem Sci 4:1490–1496

    Article  Google Scholar 

  20. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644

    Article  Google Scholar 

  21. Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-Ethyl-3-Methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141

    Article  Google Scholar 

  22. Watkins JD, Bocarsly AB (2014) Direct Reduction of Carbon Dioxide to formate in high-gas-capacity ionic liquids at Post-Transition-Metal Electrodes. Chem Sus Chem 7:284–290

    Article  Google Scholar 

  23. Sun L, Ramesha GK, Kamat PV, Brennecke JF (2014) Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30:6302–6308

    Article  Google Scholar 

  24. Grills DC, Matsubara Y, Kuwahara Y, Golisz SR, Kurtz DA, Mello BA (2014) Electrocatalytic CO2 reduction with a homogeneous catalyst in ionic liquid: high catalytic activity at low over potential. J Phys Chem Lett 5:2033–2038

    Article  Google Scholar 

  25. Quezada D, Honores J, García M, Armijo F, Isaacs M (2014) Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMImBF4. New J Chem 38:3606–3612

    Article  Google Scholar 

  26. Zhou F, Liu S, Yang B, Wang P, Alshammari AS, Deng Y (2014) Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem Commun 46:103–106

    Article  Google Scholar 

  27. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    Article  Google Scholar 

  28. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Science 298:567–572

    Article  Google Scholar 

  29. Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of Carbon Monoxide Dehydrogenase. Biol Chem 381:865–876

    Article  Google Scholar 

  30. Ferry JG (1995) CO Dehydrogenase. Annu Rev Microbiol 49:305–333

    Article  Google Scholar 

  31. Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96:8884–8889

    Article  Google Scholar 

  32. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a Carbon Monoxide Dehydrogenase reveals a [Ni–4Fe–5S] cluster. Science 293:1281–1285

    Article  Google Scholar 

  33. Ragsdale SW, Kumar M (1996) Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA synthase. Chem Rev 96:2515–2539

    Article  Google Scholar 

  34. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539

    Article  Google Scholar 

  35. Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of Carbon Dioxide Catalyzed by Iron-Sulfur Clusters [Fe4S4(SR)4]2−. J Am Chem Soc 104:6834–6836

    Article  Google Scholar 

  36. Komeda N, Nagao H, Matsui T, Adachi G, Tanaka K (1992) Electrochemical Carbon Dioxide Fixation to Thioesters Catalyzed by [Mo2Fe6S8(SEt)9]3−. J Am Chem Soc 114:3625–3630

    Article  Google Scholar 

  37. Tanaka K, Wakita R, Tanaka T (1989) Electrochemical Carboxylation Coupled with Nitrite Reduction Catalyzed by [Fe4S4(SPh)4]2− and [Mo2Fe6S8(SPh)9]3−. J Am Chem Soc 111:2428–2433

    Article  Google Scholar 

  38. Yuhas BD, Prasittichai C, Hupp JT, Kanatzidis MG (2011) Enhanced electrocatalytic reduction of CO2 with Ternary Ni–Fe4S4 and Co–Fe4S4–Based Biomimetic Chalcogels. J Am Chem Soc 133:15854–15857

    Article  Google Scholar 

  39. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (1827) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim Biophys Acta 871–881:2013

    Google Scholar 

  40. Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R (2014) Electrochemical CO2 Reduction by Ni-containing Iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141:311–318

    Article  Google Scholar 

  41. Varley JB, Hansen HA, Ammitzbøll NL, Grabow LC, Peterson AA, Rossmeisl J, Nørskov JK (2013) Ni–Fe–S Cubanes in CO2 reduction electrocatalysis: a DFT study. ACS Catal 3:2640–2643

    Article  Google Scholar 

  42. Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179

    Article  Google Scholar 

  43. Reysenbach A-L, Shock E (2002) Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science 296:1077–1082

    Article  Google Scholar 

  44. Weiss RF, Lonsdale P, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the galapagos rift. Nature 267:600–603

    Article  Google Scholar 

  45. Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microb 10:207–210

    Article  Google Scholar 

  46. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    Article  Google Scholar 

  47. Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150

    Article  Google Scholar 

  48. Huber C, Wächtershäuser G (1998) Peptides by activation of Amino Acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    Article  Google Scholar 

  49. Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243

    Article  Google Scholar 

  50. Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem Int Ed 49:7692–7694

    Article  Google Scholar 

  51. Ang R, Khan, AU, Tsujii N, Takai K, Nakamura R, Mori T, Thermoelectricity generation and electron-magnon scattering in natural chalcopyrite mineral from a Deep-Sea Hydrothermal Vent, Angew Chem Int Edn., in press

    Google Scholar 

  52. Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. Electroanal Chem 387:143–145

    Article  Google Scholar 

  53. Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea at gas-diffusion electrodes, III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J Electrochem Soc 145:595–600

    Article  Google Scholar 

  54. Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I (2014) The drive to life on wet and icy worlds. Astrobiology 14:308–343

    Article  Google Scholar 

  55. Tsipis CA, Karipidis PA (2005) Mechanistic Insights into the Bazarov synthesis of Urea from NH3 and CO2 using electronic structure calculation methods. J Phys Chem A 109:8560–8567

    Google Scholar 

  56. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Article  Google Scholar 

  57. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuhei Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamaguchi, A., Li, Y., Takashima, T., Hashimoto, K., Nakamura, R. (2016). CO2 Reduction Using an Electrochemical Approach from Chemical, Biological, and Geological Aspects in the Ancient and Modern Earth. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics