Skip to main content

Terahertz Devices and Systems for the Spectroscopic Analysis of Biomolecules—“Complexity Great and Small”

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2358 Accesses

Abstract

The world has an ever-growing need to understand the complexity of biomolecules from fields as far ranging as drug design Hajduk and Geer, Nat Rev 6(3):211, 2007, [1] and Congreve et al., Prog Med Chem 53(1), 2014, [2], crop characterization Ge et al., 15(6):12560, 2015, [3] and organic electronics Gao et al., Phys Rev Lett 114(12):128701, 2015, [4]. There are many scientific techniques for studying bio-molecules namely mass spectroscopy (MS), nuclear magnetic resonance (NMR), droplet single biomolecule studies, spectroscopy, biocalorimetry, chromatography, crystallography, electrophoresis, and bioinformatics. In this chapter the focus will be on the study of biomolecules using the relatively new technique of terahertz spectroscopy. This chapter will draw on the THz spectroscopy work of the authors and others to demonstrate the need to understand both the biomolecule and its water environment, which provide both great (biomolecule) and small (water) complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.J. Hajduk, J. Geer, Nat. Rev. Drug Discov. 6(3), 211 (2007)

    Article  Google Scholar 

  2. M. Congreve, J.M. Dias, F.H. Marshall, Prog. Med. Chem. 53, 1 (2014)

    Article  Google Scholar 

  3. H. Ge, Y. Jiang, F. Lian, Y. Zhang, S. Xia, Sensors 15(6), 12560 (2015)

    Article  ADS  Google Scholar 

  4. F. Gao, W. Tress, J. Wang, O. Inganas, Phys. Rev. Lett. 114(12), 128701 (2015)

    Article  ADS  Google Scholar 

  5. J. Xu, W. Plaxco, S.J. Allen, Protein Sci. 15, 1175 (2006)

    Article  Google Scholar 

  6. Nimbus Theraputics, Our technologies, nimbustx.com. http://nimbustx.com/our-approach/our-technologies. Accessed 15 July 2015

  7. P. Thoma, V. Judin, Optik & Photonik 8, 58 (2013)

    Article  Google Scholar 

  8. D. Crompton, A.J. Vickers, in 13th Biennial Baltic Semiconductor Conference, vol. 13 (2012)

    Google Scholar 

  9. D. Crompton A.J. Vickers, in Computer Science and Electronic Engineering Conference, vol. 47 (2012)

    Google Scholar 

  10. H. Naito, Y. Ogawa, K. Shiraga, N. Kondo, I. Osaka, A. Kubota, in International Symposium on Systems Integration (SII), vol. 192 (2011)

    Google Scholar 

  11. D.H. Choi, H. Son, S. Jung, J. Park, W.Y. Park, O.S. Kwon, G.S. Park, in Infrared. Millimeter, and THz Waves, 1 (2012)

    Google Scholar 

  12. W.L. Jorgensen, in Encyclopedia of Computational Chemistry (2002)

    Google Scholar 

  13. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  14. M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Inc., Wallingford, CT, 270, 271 (2009)

    Google Scholar 

  15. M. Heyden, Fakultat fur Chemie und Biochemie (Ruhr-Universitat Bochum, Bochum, 2010)

    Google Scholar 

  16. D. van der Spoel, E. Lindahl, B. Hess, A. Van Buuren, E. Apol, P. Meulenhoff, D. Tieleman, A. Sijbers, K. Feenstra, R. van Drunen, Gromacs User manual version 3.3 (2008)

    Google Scholar 

  17. S. Goryainov, Physica B 407, 4233 (2012)

    Article  ADS  Google Scholar 

  18. T.Q. Luong, P.K. Verma, R.K. Mitra, M. Havenith, Biophys. J. 101, 925 (2011)

    Article  ADS  Google Scholar 

  19. K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I.L. Trong, D.C. Teller, T. Okada, R.E. Stenkamp, Science Signaling 289, 739 (2000)

    ADS  Google Scholar 

  20. D.M. Rosenbaum, S.G. Rasmussen, B.K. Kobilka, Nature 459, 356 (2009)

    Article  ADS  Google Scholar 

  21. J.P. Overington, B. Al-Lazikani, A.L. Hopkins, Nat. Rev. Drug Discovery 5, 993 (2006)

    Article  Google Scholar 

  22. Y. Arinaminpathy, E. Khurana, D.M. Engelman, M.B. Gerstein, Drug Discovery Today 14, 1130 (2009)

    Article  Google Scholar 

  23. B. Bosier, E. Hermans, Trends Pharmacol. Sci. 28, 438 (2007)

    Article  Google Scholar 

  24. K.C. Chou, Biophys. J. 48, 289 (1985)

    Article  ADS  Google Scholar 

  25. K.C. Chou, Biophys. Chem. 30, 3 (1988)

    Article  Google Scholar 

  26. R. Balu, H. Zhang, E. Zukowski, J.-Y. Chen, A. Markelz, S. Gregurick, Biophys. J. 94, 3217 (2008)

    Article  ADS  Google Scholar 

  27. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, N. Sarukura, Biophys. J. 89, L22 (2005)

    Article  Google Scholar 

  28. M.X. Ruiz-Gonzalez, I. Marín, J. Mol. Evol. 58, 348 (2004)

    Article  ADS  Google Scholar 

  29. Y. Shichida, Philos. Trans. R. Soc. B: Biol. Sci. 364, 2881 (2009)

    Article  Google Scholar 

  30. J. Buczyłko, J.C. Saari, R.K. Crouch, K. Palczewski, J. Biol. Chem. 271, 20621 (1996)

    Article  Google Scholar 

  31. G.B. Cohen, D.D. Oprian, P.R. Robinson, Biochemistry 31, 12592 (1992)

    Article  Google Scholar 

  32. R.S. Liu, G.S. Hammond, Photochem. Photobiol. Sci. 2, 835 (2003)

    Article  Google Scholar 

  33. J.-P. Vilardaga, M. Bünemann, C. Krasel, M. Castro, M.J. Lohse, Nat. Biotechnol. 21, 807 (2003)

    Article  Google Scholar 

  34. R. Nygaard, T.M. Frimurer, B. Holst, M.M. Rosenkilde, T.W. Schwartz, Trends Pharmacol. Sci. 30, 249 (2009)

    Article  Google Scholar 

  35. T. Okada, Y. Fujiyoshi, M. Silow, J. Navarro, E.M. Landau, Y. Shichida, Proc. Natl. Acad. Sci. 99, 5982 (2002)

    Article  ADS  Google Scholar 

  36. H.-W. Choe, Y.J. Kim, J.H. Park, T. Morizumi, E.F. Pai, N. Krauß, K.P. Hofmann, P. Scheerer, O.P. Ernst, Nature 471, 651 (2011)

    Article  ADS  Google Scholar 

  37. P.T. Ho, J.M. Moran, K.Y. Lo, Astrophys. J. Lett. 616, L1 (2004)

    Article  ADS  Google Scholar 

  38. A. Vickers, R. Dudley, P. Reeves, C. Reynolds, S. Gadde, T. Nithyanand, Y. Ma, in Infrared and Millimeter Waves, vol. 395 (2007)

    Google Scholar 

  39. K. Tielrooij, D. Paparo, L. Piatkowski, H. Bakker, M. Bonn, Biophys. J. 97, 2484 (2009)

    Article  ADS  Google Scholar 

  40. F. Despa, A. Fernández, R.S. Berry, Phys. Rev. Lett. 93, 228104 (2004)

    Article  ADS  Google Scholar 

  41. J. Standfuss, P.C. Edwards, A. D’Antona, M. Fransen, G. Xie, D.D. Oprian, G.F. Schertler, Nature 471, 656 (2011)

    Article  ADS  Google Scholar 

  42. P. Fenimore, H. Frauenfelder, B. McMahon, F. Parak, Proc. Natl. Acad. Sci. 99, 16047 (2002)

    Article  ADS  Google Scholar 

  43. M.G. Wolf, M. Hoefling, C. Aponte-Santamaria, H. Grubmüller, G. Groenhof, J. Comput. Chem. 31, 2169 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony John Vickers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vickers, A.J., Crompton, D. (2016). Terahertz Devices and Systems for the Spectroscopic Analysis of Biomolecules—“Complexity Great and Small”. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_5

Download citation

Publish with us

Policies and ethics