Skip to main content

The Challenge to Develop Metrology at the Nanoscale

  • Chapter
  • First Online:
  • 2427 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Since nanotechnology goods are manufactured and utilised by the community, legal metrology, human safety, and the environment demand traceable measurement techniques. This is the business of the international network of measurements called metrology. After 2017 the realisation of the international metre will be through the lattice parameter of silicon or another suitable crystalline material. Many NMI’s have developed traceable instrumentation systems primarily for AFM, but only partly for SEM and optical instrumentation. None of the existing techniques is able to meet the present requirements for reliable metrology of nanomaterials. However suitable reference materials are being developed alongside standardised sample preparation methods. Present second generation nanostructures are complex requiring multiparameter and ensemble measurements that AFM or SEM cannot offer. Ensemble techniques reveal the sub-nanometre detail required in the healthcare and electronics industry. The next generation of manufacturing in these industries will be three-dimensional complex sub-nm architectures, and nanometrology is currently being driven there.

This is a preview of subscription content, log in via an institution.

References

  1. SI Brochure www.bipm.org

  2. B. Andreas et al., Determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Lett. 106, 030801 (2011)

    Google Scholar 

  3. http://www.bipm.org/en/bipm/mass/avogadro

  4. Yeditepe University dimensional calibration services (YUKAL) handbook (Istanbul, Turkey, 2010)

    Google Scholar 

  5. E.L. Wolf, Nanophysics and nanotechnology (Wiley-VCH Weinheim, Germany, 2005), pp. 28–37

    Google Scholar 

  6. Freitas R.A. Jr, Meeting the challenge of building diamondoid medical nanorobots. Int. J. Robot. Res. 28, 548–557 (2009)

    Google Scholar 

  7. A.C. Clarke, The Fountains of Paradise Ballantine (Harcourt, New York, 1978)

    Google Scholar 

  8. S. Knudsen, L. Golubovic, Rotating space elevators: physics of celestial scale spinning strings. Eur. Phys. J. Plus 129, 1–24 (2014)

    Google Scholar 

  9. N.M. Pugno, Towards the Artsutanov s dream of the space elevator: The ultimate design of a 35 GPa strong tether thanks to graphene. Acta Astronaut. 82, 221–224 (2013)

    Google Scholar 

  10. P.K. Aravind, The physics of the space elevator. Am. J. Phys. 75, 125–130 (2007)

    Google Scholar 

  11. R.R. Birge, Protein-based computers. Sci. Am. 272, 90–95 (1995)

    Google Scholar 

  12. K.E. Drexler, Engines of creation: the coming era of nanotechnology (Anchor books edition, 1986), pp. 7–12

    Google Scholar 

  13. K.E. Drexler, Nanosystems: Molecular Machinery Manufacturing and Computation (Wiley-interscience, 1992), pp. 191–248

    Google Scholar 

  14. K.E. Drexler, Engines of Creation 2.0: The Coming Era of Nanotechnology, 20th anniversary e-book edition, pp. 517–535 (2007)

    Google Scholar 

  15. R.D. Kamm, R. Bashir, Creating living cellular machines. Ann. Biomed. Eng. 42, 445–459 (2014)

    Google Scholar 

  16. P. Ball, Natural strategies for the molecular engineer. Nanotechnology 13, R15–R28 (2002)

    Google Scholar 

  17. A.A. Barhorst, O.P. Harrison, G.D. Bachand, Modelling elasto-mechanical phenomena involved in the motor-driven assembly of nanomaterials, in ASME 19th International Conference on Design Theory and Methodology/1st International Conference on Micro & Nano Systems, vol. 3, pp. 669–677 (2008)

    Google Scholar 

  18. G.A. Ozin, I. Manners, S. Fournier-Bidoz et al., Dream nanomachines. Adv Mat 17, 3011 (2005)

    Google Scholar 

  19. D.P. Anderson, T. Kilburn, A pioneer of computer design. IEEE Ann. Hist. Comp. 31, 84 (2009)

    Google Scholar 

  20. A.C. Diebold, K. Monahan, Next-generation metrology must meet challenges. Solid State Technol. 41, 50 (1998)

    Google Scholar 

  21. K. Seshan (ed.), The Handbook of Thin Film Deposition: Processes and Technologies, 6, 241 (2002)

    Google Scholar 

  22. M.A. Jamakhani, M.R. Jadhav, G.S. Kamble, V.R. Gambhire, Nanometrology in biological and medical sciences. Int. J. Adv. Biotechnol. Res. 2, 213–223 (2011)

    Google Scholar 

  23. L. Peltonen, J. Hirvonen, Pharmaceutical nanocrystals by nanomilling: critical process parameters particle fracturing and stabilization method. Eur. J. Pharm. Biopharm. 81, 214–222 (2012)

    Google Scholar 

  24. Euromet (2014) The strategic research agenda of EURAMET

    Google Scholar 

  25. JRC Reference Report: Requirements on measurements for the implementation of the European Commission definition of the term nanomaterial

    Google Scholar 

  26. J.A. Woollam, B. Johs, C.M. Herzinger et al., Overview of variable angle spectroscopic ellipsometry, in Critical reviews of optical science and technology: Optical Metrology CR72, ed. by A-J. Ghanim (1999), pp. 3–28

    Google Scholar 

  27. R.K. Leach, C. Giusca, Results from a comparison of optical thin film thickness measurement. NPL Report UK (2009)

    Google Scholar 

  28. M.P. Seah, S.J. Spencer, F. Bensebaa et al., Critical review of the current status of thickness measurements for ultra-thin SiO2 on Si: Part V results of a CCQM pilot study. Surf. Interfaces Anal. 36, 1269–1303 (2004)

    Google Scholar 

  29. B. Belzer, K. Eberhardt, D. Chandler-Horowitz et al., Thin film reference materials development final report for CRADA CN-1364. NIST Gaithersburg 2012 (1998)

    Google Scholar 

  30. Euromet EMPIR Call, Traceable AFM measurement capability. Industry and Research Potential Selected Research Topic: SRT-r 05, 1–3 (2014)

    Google Scholar 

  31. V. Korpelainen, J. Seppä, A. Lassila, Design and characterization of MIKES metrological atomic force microscope. Prec. Eng. 34, 735–744 (2010)

    Google Scholar 

  32. S. Ducourtieux, B. Poyet, J. David, Development of a metrological atomic force microscope with minimized Abbe error and differential interferometer based real-time position control. Measur. Sci. Technol. 22, 094010 (2011)

    Google Scholar 

  33. B. Babic, C.H. Freund, J. Herrmann et al., Metrological scanning probe microscope based on a quartz tuning fork detector. J. Micro/Nanolith MEMS MOEMS 11, 011003 (2012)

    Google Scholar 

  34. P. Klapetek, M. Valtr, M. Matula, A long-range scanning probe microscope for automotive reflector optical quality inspection. Measur. Sci. Technol. 22, 094011 (2011)

    Google Scholar 

  35. G. Dai, F. Pohlenz, X. Min et al., Metrological large range scanning probe microscope. Rev. Sci. Instrum. 75, 962–969 (2004)

    Google Scholar 

  36. I. Misumi, S. Gonda, Q. Huang et al., Sub-hundred nanometre pitch measurement using an AFM with differential laser interferometers for designing usable lateral scales. Measur. Sci. Technol. 16, 2080–2090 (2005)

    Google Scholar 

  37. J.A. Kramar, Nanometre resolution metrology with the molecular measuring machine. Measur. Sci. Technol. 16, 2121–2128 (2005)

    Google Scholar 

  38. J. Haycocks, K. Jackson, Traceable calibration of transfer standards for scanning probe microscopy. Prec. Eng. 29, 168–175 (2005)

    Google Scholar 

  39. V. Korpelainen, A. Lassila, Calibration of a commercial AFM: traceability for a coordinate system. Measur. Sci. Technol. 18, 395–403 (2007)

    Google Scholar 

  40. F. Meli, NANO4-1D Gratings. Final report (2000)

    Google Scholar 

  41. J. Garnaes, K. Dirscherl, NANO5—2D Grating—Final report CCL-S4. Metrologia. Tech. Suppl. 45, 04003 (2008)

    Google Scholar 

  42. L. Koenders, R. Bergmans, J. Garnaes et al., Comparison on nanometrology: nano 2—step height. Metrologia 40, 04001 (2003)

    Google Scholar 

  43. L. Klapetek, P. Koenders, F. Meli, G.B. Picotto, Comparison on step height measurements in the nano and micrometre range by scanning force microscopes. Metrologia 43, 04001 (2006)

    Google Scholar 

  44. G. Hamann, Positioning in sub-nanometer resolution High-Accuracy and Traceable AFM Measurements on Semiconductors and Step Standards. Whitepaper Physik Instrumente GmbH (2013)

    Google Scholar 

  45. M.T. Postek, A.E. Vladar, Modelling for accurate dimensional scanning electron microscope metrology: then and now. Scanning Special Iss. 33, 111–125 (2011)

    Google Scholar 

  46. M.T. Postek, A.E. Vladar, J.S. Villarrubiar, Nanometrology solutions using an ultra-high resolution in-lens SEM (NIST White Paper, 2011)

    Google Scholar 

  47. J. Cazaux, Errors in nanometrology by SEM. Nanotechnol 15, 1195–1199 (2004)

    Google Scholar 

  48. A. Yacoot, U. Kuetgens, Sub-atomic dimensional metrology: developments in the control of x-ray interferometers. Measur. Sci. Technol. 23, 074003 (2012)

    Google Scholar 

  49. G. Basile, P. Becker, A. Bergamin et al., Combined optical and X-ray interferometry for high-precision dimensional metrology. Proc. Royal Soc. A-Math. Phys. Eng. Sci. 456, 701–729 (2000)

    Google Scholar 

  50. L. Koenders, Defining a European Strategy for Nanometrology- Dimensional and Mechanical Aspects (Co-nanomet Physikalisch-Technische Bundesanstalt, Budapest, 2011)

    Google Scholar 

  51. M. Krumrey, G. Gleber, F. Scholze, J. Wernecke, Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology. Measur. Sci. Technol. 22, 094032 (2011)

    Google Scholar 

  52. NIST, Dimensional metrology for nanofabrication. Materials Science and Engineering Division White Paper (2009)

    Google Scholar 

  53. J.P. Cline, D.A. Windover, Materials structure characterization. Diffraction Metrology and Standards NIST White Paper (2014)

    Google Scholar 

  54. N. Yoshimizu, A. Lal, C.R. Pollock, Nanometrology optical ruler imaging system using diffraction from a quasiperiodic structure. Opt. Express 18, 20827–20838 (2010)

    Google Scholar 

  55. I. Calizo, S. Ghosh, D. Teweldebrhan et al., Raman nanometrology of graphene on arbitrary substrates and at variable temperature. Proc. SPIE 7037, 70371B (2008)

    Google Scholar 

  56. A.A. Balandin, Thermal transport in graphene and graphene multi-layers. Seminar Report Nano-Device Laboratory, Univ California-Riverside (2008)

    Google Scholar 

  57. A. Vladár, PML Scientists Develop 3D SEM Metrology for 10 nm Structures. Semiconductor and dimensional division NIST White Paper (2014)

    Google Scholar 

  58. P. Todua, Nanometrology nanoscale reference materials for high-resolution microscopy. national scientific metrology center/center for surface and vacuum research (CSVR) Moscow Institute of Physics and Technology (MIPT). Vienna, Austria (2011)

    Google Scholar 

  59. P. Becker, M. Jentschel, G. Mana, G. Zosi, Towards an atomic realisation of the kilogram: the measurements of NA and NAh, in Metrology and Fundamental Constants, ed. by T. Haensch, S. Leschiutta, A. Wallard (IOS Press, Italy, 2007), pp. 519–530

    Google Scholar 

  60. C. He, S. Wu, N. Zhao et al., Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7, 4459–4469 (2013)

    Google Scholar 

  61. H.W. Kroto, J.R. Heath, S.C. OBrien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  62. H. Isobe, S. Hitosugi, T. Yamasaki et al., Molecular bearings of finite carbon nanotubes and fullerenes in ensemble rolling motion. Chem. Sci. 4, 1293–1297 (2013)

    Google Scholar 

  63. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Google Scholar 

  64. M.M. Shulaker, G. Hills, N. Patil et al., Carbon nanotube computer. Nature 501, 526 (2013)

    Google Scholar 

  65. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  66. T. Georgiou, R. Jalil, B.D. Belle et al., Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)

    Google Scholar 

  67. R.C. Merkle, R.A. Jr Freitas, Theoretical analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis. J. Nanosci. Nanotechnol. 3, 319–324 (2003)

    Google Scholar 

  68. D.G. Allis, K.E. Drexler, Design and analysis of a molecular tool for carbon transfer in mechanosynthesis. J. Comp. Theor. Nanosci. 2, 45–55 (2005)

    Google Scholar 

  69. A. Yamamoto, T. Hamada, I. Hisaki et al., Dynamically deformable cube-like hydrogen-bonding networks in water-responsive diamondoid porous organic salts. Angew. Chem. Int. Ed. 52, 1709–1712 (2013)

    Google Scholar 

  70. D. Wang, H.L. Xin, R. Hovden et al., Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013)

    Google Scholar 

  71. H. Li, D.X. Chen, Y.L. Sun et al., Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J. Am. Chem. Soc. 135, 1570–1576 (2013)

    Google Scholar 

  72. J. Liu, W. Bu, L. Pan et al., NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013)

    Google Scholar 

  73. L. Wang, I. Meric, P.I. Huang et al., One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013)

    Google Scholar 

  74. P.J. Kueffer, C.A. Maitz, A.A. Khan et al., Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc. Nat. Acad. Sci. USA 110, 6512–6517 (2013)

    Google Scholar 

  75. H. Wu, G. Yu, K. Pan et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Google Scholar 

  76. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko et al., Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)

    Google Scholar 

  77. H. Choi, S.J. Ko, Y. Choi et al., Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 7, 732–738 (2013)

    Google Scholar 

  78. C. Wang, H. Xu, C. Liang et al., Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7, 6782–6795 (2013)

    Google Scholar 

  79. G. Chen, Y. Zhao, G. Fu et al., Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014)

    Google Scholar 

  80. Y. Hu, J.O. Jensen, W. Zhang et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem. Int. 53, 3675–3679 (2014)

    Google Scholar 

  81. B.J. Sanghavi, A.K. Srivastava, Adsorptive stripping voltammetric determination of imipramine trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138, 1395–1404 (2013)

    Google Scholar 

  82. S. Sarina, H. Zhu, E. Jaatinen et al., Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 135, 5793–5801 (2013)

    Google Scholar 

  83. U. Rocha, C. Jacinto, S.W. Ferreira et al., Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 7, 1188–1199 (2013)

    Google Scholar 

  84. J. Burschka, N. Pellet, S.J. Moon et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013)

    Google Scholar 

  85. X. Zhu, X. Niu, H. Zhao et al., Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sens. Act. B 195, 274–280 (2014)

    Google Scholar 

  86. C.C. Druck, J.L. Pozzobon, G.L. Callegari et al., Adhesion to Y-TZP ceramic: study of silica nanofilm coating on the surface of Y-TZP. J. Biomed. Mat. Res. B-App. Biomater. 103, 143–150 (2015)

    Google Scholar 

  87. J.H. Heo, S.H. Im, J.H. Noh et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon 7, 487–492 (2013)

    Google Scholar 

  88. T. Stephenson, Z. Li, B. Olsen et al., Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014)

    Google Scholar 

  89. T. Choi, S.H. Kim, C.W. Lee et al., Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens. Bioelectron. 63, 325–330 (2015)

    Google Scholar 

  90. F. Song, X. Li, Q. Wang et al., Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J. Biomed. Nanotechnol. 11, 40–52 (2015)

    Google Scholar 

  91. J. Wallentin, N. Anttu, D. Asoli et al., InP nanowire array solar cells achieving 13.8 % efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013)

    Google Scholar 

  92. P. Yang, Y. Ding, Z. Lin et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014)

    Google Scholar 

  93. L. Fu, W. Cai, A. Wang et al., Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mat. Lett. 142, 201–203 (2015)

    Google Scholar 

  94. X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25, 2152–2157 (2013)

    Google Scholar 

  95. Z. Bian, Zhang T.P. Tachikawa et al., Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014)

    Google Scholar 

  96. C.J. Hages, S. Levcenco, C.K. Miskin et al., Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog. Photovolt. 23, 376–384 (2015)

    Google Scholar 

  97. H.S. Kim, J.W. Lee, N. Yantara et al., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)

    Google Scholar 

  98. J. Yu, J. Jin, B. Cheng et al., A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mat. Chem. A 2, 3407–3416 (2014)

    Google Scholar 

  99. S. Danwittayakul, M. Jaisai, J. Dutta, Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. App. Cat. B-Environ. 163, 1–8 (2015)

    Google Scholar 

  100. L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur et al., Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 14, 6685–6692 (2014)

    Google Scholar 

  101. J.Y. Jeng, Y.F. Chiang, M.H. Lee et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)

    Google Scholar 

  102. Y. Liu, J. Zhao, Z. Li et al., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)

    Google Scholar 

  103. Y. Lin, J. Wang, Z.G. Zhang et al., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015)

    Google Scholar 

  104. T. Choi, S.H. Kim, C.W. Lee et al., Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens. Bioelectron. 63, 325–330 (2015)

    Google Scholar 

  105. O. Chen, J. Zhao, V.P. Chauhan et al., Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013)

    Google Scholar 

  106. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014)

    Google Scholar 

  107. S.G. Kumar, K.S.R. Koteswara, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)

    Google Scholar 

  108. S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers. Prog. Polym. Sci. 38, 963–991 (2013)

    Google Scholar 

  109. C. Zhu, X. Mu, P.A. van Aken et al., Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014)

    Google Scholar 

  110. C. Liu, L. Wang, Y. Tang et al., Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. App. Cat. B-Environ. 164, 1–9 (2015)

    Google Scholar 

  111. S.I. Kim, J.S. Lee, H.J. Ahn et al., Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5, 1596–1603 (2013)

    Google Scholar 

  112. R.K. Joshi, P. Carbone, F.C. Wang et al., Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014)

    Google Scholar 

  113. H. Zhang, X. Hou, Z. Yang et al., Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control. Small 11, 786–791 (2015)

    Google Scholar 

  114. M.H. Oh, T. Yu, S.H. Yu et al., Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013)

    Google Scholar 

  115. S. Dasgupta, T. Auth, G. Gompper, Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 14, 687–693 (2014)

    Google Scholar 

  116. J. Min, F. Wang, Y. Cai et al., Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol. Chem. Commun. 51, 761–764 (2015)

    Google Scholar 

  117. Z. Yu, B. Duong, D. Abbitt et al., Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 25, 3302–3306 (2013)

    Google Scholar 

  118. D.D. Wang, G.Z. Xing, F. Yan et al., Ferromagnetic (Mn N)-codoped ZnO nanopillars array: experimental and computational insights. Appl. Phys. Lett. 104, 022412 (2014)

    Google Scholar 

  119. D.M. Drotlef, E. Appel, H. Peisker et al., Morphological studies of the toe pads of the rock frog Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives. Int. Focus 5, 0036 (2015)

    Google Scholar 

  120. K. Wu, T. Rindzevicius, M.S. Schmidt et al., Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations. J. Phys. Chem. C 119, 2053–2062 (2015)

    Google Scholar 

  121. W. Liu, Y.Q. Feng, X.B. Yan et al., Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013)

    Google Scholar 

  122. X. Liu, Z. Chang, L. Luo et al., Hierarchical ZnxCo3-xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. Chem of Mat 26, 1889–1895 (2014)

    Google Scholar 

  123. M. Yu, J. Chen, J. Liu et al., Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015)

    Google Scholar 

  124. X. Wang, L. Jiao, K. Sheng et al., Solution-processable graphene nanomeshes with controlled pore structures. Sci. Rep. 3, 1996 (2013)

    Google Scholar 

  125. C.F. Guo, T. Sun, Q. Liu et al., Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014)

    Google Scholar 

  126. B. Piccione, D.S. Gianola, Tunable thermoelectric transport in nanomeshes via elastic strain engineering. Appl. Phys. Lett. 106, 113101 (2015)

    Google Scholar 

  127. S. Costeux, L. Zhu, Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 54, 2785–2795 (2013)

    Google Scholar 

  128. A. Wittstock, M. Baeumer, Catalysis by unsupported skeletal gold catalysts. Acc. Chem. Res. 47, 731–739 (2014)

    Google Scholar 

  129. S. Sen, D. Liu, G.T.R. Palmore, Electrochemical reduction of CO2 at copper nanofoams. ACS Catalysis 4, 3091–3095 (2014)

    Google Scholar 

  130. S. Costeux, I. Khan, S.P. Bunker et al., Experimental study and modelling of nanofoams formation from single phase acrylic copolymers. J. Cell. Plastic. 51, 197–221 (2015)

    Google Scholar 

  131. C. Anders, E.M. Bringa, H.M. Urbassek, Sputtering of a metal nanofoam by Au ions. Nucl. Instrum. Methods. Phys. Res. Sect. B-Beam Interact. Mater. Atom 342, 234–239 (2015)

    Google Scholar 

  132. R. Köning, J. Flügge, D. Hüser et al., Dimensional micro- and nanometrology at PTB, in 2011 Proceedings of 8th International Conference on Measurement, Smolenice, Slovakia 95:106 (2011)

    Google Scholar 

  133. L. Koenders, EUROMET project 707 step height standards. PTB Final Report (2005)

    Google Scholar 

  134. V. Korpelainen, J. Seppä, A. Lassila, Measurement strategies and uncertainty estimations for pitch and step height calibrations by metrological AFM. Proc. SPIE 8036, 80360Q1 (2011)

    Google Scholar 

  135. J.B. Warren, B.J. Panessa-Warren, A comparison of nanometrology using TEM and SEM. Microsc. Microanal. 11(2), 1932–1933 (2005)

    Google Scholar 

  136. T. Ikegami, A. Yamaguchi, M. Tanaka et al., Evolution and future of critical dimension measurement system for semiconductor processes. Hitachi high Technologies Inc White paper 203–209 (2011)

    Google Scholar 

  137. Nanosensors, Transfer Standards for Scanning Probe Microscopy (Nano World AG Data Sheet, 2013)

    Google Scholar 

Download references

Acknowledgments

I would like to thank Seda Aytekin for her assistance in finding the relevant references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ince, R. (2016). The Challenge to Develop Metrology at the Nanoscale. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_4

Download citation

Publish with us

Policies and ethics