Skip to main content

Non-Markovian Dynamics of Qubit Systems: Quantum-State Diffusion Equations Versus Master Equations

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2393 Accesses

Abstract

In this review we discuss recent progress in the theory of open quantum systems based on non-Markovian quantum state diffusion and master equations. In particular, we show that an exact master equation for an open quantum system consisting of a few qubits can be explicitly constructed by using the corresponding non-Markovian quantum state diffusion equation. The exact master equation arises naturally from the quantum decoherence dynamics of qubit systems collectively interacting with a colored noise. We illustrate our general theoretical formalism by the explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This exact qubit master equation accurately characterizes the time evolution of the qubit system in various parameter domains, and paves the way for investigation of the memory effect of an open quantum system in a non-Markovian regime without any approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. L. Diósi, N. Gisin, W.T. Strunz, Non-Markovian quantum state diffusion. Phys. Rev. A 58, 1699–1712 (1998)

    Article  MathSciNet  Google Scholar 

  2. Y. Chen, J.Q. You, T. Yu, Exact non-Markovian master equations for multiple qubit systems: quantum-trajectory approach. Phys. Rev. A 90, 052104 (2014)

    Article  Google Scholar 

  3. C. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag, Berlin Heidelberg, 2004)

    Google Scholar 

  4. Caldeira Ao, A.J. Leggett, Path integral approach to quantum Brownian motion. Phys. A 121, 587–616 (1983)

    Article  MathSciNet  Google Scholar 

  5. B.L. Hu, J.P. Paz, Y. Zhang, Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D 45, 2843–2861 (1992)

    Article  MathSciNet  Google Scholar 

  6. W.T. Strunz, L. Diósi, N. Gisin, Open system dynamics with non-Markovian quantum trajectories. Phys. Rev. Lett. 82, 1801–1805 (1999)

    Article  MathSciNet  Google Scholar 

  7. W.T. Strunz, L. Diósi, N. Gisin, T. Yu, Quantum trajectories for Brownian motion. Phys. Rev. Lett. 83, 4909–4913 (1999)

    Article  MathSciNet  Google Scholar 

  8. T. Yu, L. Diósi, N. Gisin, W.T. Strunz, Non-Markovian quantum-state diffusion: perturbation approach. Phys. Rev. A 60, 91–103 (1999)

    Article  Google Scholar 

  9. J. Jing, T. Yu, Non-Markovian relaxation of a three-level system: quantum trajectory approach. Phys. Rev. Lett. 105, 240403 (2010)

    Article  Google Scholar 

  10. X. Zhao, J. Jing, B. Corn, T. Yu, Dynamics of interacting qubits coupled to a common bath: non-Markovian quantum-state-diffusion approach. Phys. Rev. A 84, 032101 (2011)

    Article  Google Scholar 

  11. J. Jing, X. Zhao, J.Q. You, T. Yu, Time-local quantum-state-diffusion equation for multilevel quantum systems. Phys. Rev. A 85, 042106 (2012)

    Article  Google Scholar 

  12. J. Jing, X. Zhao, J.Q. You, W.T. Strunz, T. Yu, Many-body quantum trajectories of non-Markovian open systems. Phys. Rev. A 88, 052122 (2013)

    Article  Google Scholar 

  13. T. Yu, Non-Markovian quantum trajectories versus master equations: finite-temperature heat bath. Phys. Rev. A 69, 062107 (2004)

    Article  Google Scholar 

  14. C. Anastopoulos, B.L. Hu, Two-level atom-field interaction: exact master equations for non-Markovian dynamics, decoherence, and relaxation. Phys. Rev. A 62, 033821 (2000)

    Article  Google Scholar 

  15. C. Chou, T. Yu, B.L. Hu, Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Phys. Rev. E 77011112 (2008)

    Google Scholar 

  16. C. Anastopoulos, S. Shresta, B.L. Hu, Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field. Quant. Inf. Process. 8, 549–563 (2009)

    Article  MathSciNet  Google Scholar 

  17. C.H. Fleming, A. Roura, B.L. Hu, Exact analytical solutions to the master equation of quantum Brownian motion for a general environment. Ann. Phys. 326, 1207–1258 (2011)

    Article  MathSciNet  Google Scholar 

  18. H.M. Wiseman, Stochastic quantum dynamics of a continuously monitored laser. Phys. Rev. A 47, 5180–5192 (1993)

    Article  Google Scholar 

  19. H.P. Breuer, W. Huber, F. Petruccione, Fast Monte Carlo algorithm for nonequilibrium systems. Phys. Rev. E 53, 4232–4235 (1996)

    Article  Google Scholar 

  20. N. Gisin, I.C. Percival, The quantum-state diffusion model applied to open systems. J. Phys. A: Math. Gen. 25, 5677–5691 (1992)

    Article  MathSciNet  Google Scholar 

  21. B.L. Hu, J.P. Paz, Y. Zhang, Quantum Brownian motion in a general environment II: nonlinear coupling and perturbative approach. Phys. Rev. D 47, 1576–1594 (1993)

    Article  MathSciNet  Google Scholar 

  22. S. Lin, C. Chou, B.L. Hu, Disentanglement of two harmonic oscillators in relativistic motion. Phys. Rev. D 78, 125025 (2008)

    Article  Google Scholar 

  23. C.H. Fleming, B.L. Hu, Non-Markovian dynamics of open quantum systems: stochastic equations and their perturbative solutions. Ann. Phys. 327, 1238–1276 (2012)

    Article  MathSciNet  Google Scholar 

  24. J.P. Paz, A.J. Roncaglia, Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  Google Scholar 

  25. W. Zhang, P. Lo, H. Xiong, M. Tu, F. Nori, General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)

    Article  Google Scholar 

  26. W.T. Strunz, T. Yu, Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion. Phys. Rev. A 69, 052115 (2004)

    Article  Google Scholar 

  27. G. Lindblad, Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    Article  MathSciNet  Google Scholar 

  28. J. Gea-Banacloche, Qubit-qubit interaction in quantum computers. Phys. Rev. A 57, R1 (1998)

    Article  Google Scholar 

  29. F. Setiawan, H. Hui, J.P. Kestner, X. Wang, S.D. Sarma, Robust two-qubit gates for exchange-coupled qubits. Phys. Rev. B 89, 085314 (2014)

    Article  Google Scholar 

  30. A.C. Doherty, M.P. Wardrop, Two-qubit gates for resonant exchange qubits. Phys. Rev. Lett. 111, 050503 (2013)

    Article  Google Scholar 

  31. L.A. Wu, D.A. Lidar, Dressed qubits. Phys. Rev. Lett. 91, 097904 (2003)

    Article  Google Scholar 

  32. A.M. Childs, W. van Dam, Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)

    Article  MathSciNet  Google Scholar 

  33. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  Google Scholar 

  34. P. van Loock, S.L. Braunstein, Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)

    Article  Google Scholar 

  35. F. Xue, S.X. Yu, C.P. Sun, Quantum control limited by quantum decoherence. Phys. Rev. A 73, 013403 (2006)

    Article  Google Scholar 

  36. A.M. Brańczyk, P.E.M.F. Mendonça, A. Gilchrist, A.C. Doherty, S.D. Bartlett, Quantum control of a single qubit. Phys. Rev. A 75, 012329 (2007)

    Article  MathSciNet  Google Scholar 

  37. F. Delgado, Quantum control on entangled bipartite qubits. Phys. Rev. A 81, 042317 (2010)

    Article  Google Scholar 

  38. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  Google Scholar 

  39. Y. Chen, J.Q. You, T. Yu, Generic non-Markovian master equations for multilevel systems. Submitted to Phys. Rev. A (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusui Chen .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Here we supply a proof of the Novikov theorem. To make the proof more generic, we calculate the term \( {\fancyscript{M}}(z_{\tau } P_{t} ) \), where \( \tau \) and \( t \) are two independent time indexes. In this, \( {\fancyscript{M}}(z_{t} P_{t} ) \) is the limit case in which \( \tau = t \). By the definition of ensemble average in (25.6), we have [8]

$$ {\fancyscript{M}}(z_{\tau } P_{t} ) = \int \frac{{d^{2} z}}{\pi }e^{{ - |z|^{2} }} z_{\tau } P_{t} . $$
(25.57)

where \( |z|^{2} = \sum\nolimits_{k} |z_{k} |^{2} \) and \( d^{2} z = d^{2} z_{1} d^{2} z_{2} \cdots \). With the definition of

\( z_{\tau } = i\sum\nolimits_{k} g_{k}^{*} z_{k} e^{{ - i\omega_{k} \tau }} \), we have

$$ {\fancyscript{M}}(z_{\tau } P_{t} ) = \int \frac{{d^{2} z_{1} }}{\pi }\frac{{d^{2} z_{2} }}{\pi } \cdots \prod\limits_{n} e^{{ - |z_{n} |^{2} }} \left( {i\sum\limits_{k} g_{k}^{*} z_{k} e^{{ - i\omega_{k} \tau }} } \right)P_{t} . $$

Since all \( z_{k} \) are independent to each other, the above integration can be simplified as

$$ {\fancyscript{M}}(z_{\tau } P_{t} ) = i\sum\limits_{k} g_{k}^{*} e^{{ - i\omega_{k} \tau }} \left( {\prod\limits_{n \ne k} \int \frac{{d^{2} z_{n} }}{\pi }e^{{ - |z_{n} |^{2} }} } \right)\int \frac{{dz_{k} dz_{k}^{*} }}{\pi }e^{{ - |z_{k} |^{2} }} z_{k} P_{t} . $$

Integrating by parts, then we have,

$$ \begin{aligned} & \int \frac{{dz_{k} dz_{k}^{*} }}{\pi }e^{{ - |z_{k} |^{2} }} z_{k} P_{t} \\ = & \int \frac{{dz_{k} dz_{k}^{*} }}{\pi }\left( { - \frac{\partial }{{\partial z_{k}^{*} }}e^{{ - |z_{k} |^{2} }} } \right)P_{t} \\ = & \int \frac{{dz_{k} dz_{k}^{*} }}{\pi }\left[ {\left( { - \frac{\partial }{{\partial z_{k}^{*} }}e^{{ - |z_{k} |^{2} }} P_{t} } \right) + e^{{ - |z_{k} |^{2} }} \frac{\partial }{{\partial z_{k}^{*} }}P_{t} } \right] \\ = & \int \frac{{dz_{k} dz_{k}^{*} }}{\pi }e^{{ - |z_{k} |^{2} }} \frac{\partial }{{\partial z_{k}^{*} }}P_{t} . \\ \end{aligned} $$

Then

$$ {\fancyscript{M}}(z_{\tau } P_{t} ) = i\sum\limits_{k} g_{k}^{*} e^{{ - i\omega_{k} \tau }} \int \frac{{d^{2} z}}{\pi }e^{{ - |z|^{2} }} \frac{\partial }{{\partial z_{k}^{*} }}P_{t} . $$

Using the functional derivative chain rule,

$$ \begin{aligned} {\fancyscript{M}}(z_{\tau } P_{t} ) & = i\sum\limits_{k} g_{k}^{*} e^{{ - i\omega_{k} \tau }} \int \frac{{d^{2} z}}{\pi }e^{{ - |z|^{2} }} \int\limits_{0}^{t} ds\frac{{\partial z_{s}^{*} }}{{\partial z_{k}^{*} }}\frac{\delta }{{\delta z_{s}^{*} }}P_{t} \\ & = \int \frac{{d^{2} z}}{\pi }e^{{ - |z|^{2} }} \int\limits_{0}^{t} ds\alpha (\tau ,s)O(t,s,z^{*} )P_{t} , \\ {\fancyscript{M}}(z_{\tau } P_{t} ) & = \int\limits_{0}^{t} ds\alpha (\tau ,s){\fancyscript{M}}[O(t,s,z^{*} )P_{t} ]. \\ \end{aligned} $$

Now we have the Novikov theorem,

$$ \begin{aligned} {\fancyscript{M}}(z_{\tau } P_{t} ) & = \int\limits_{0}^{t} ds{\fancyscript{M}}(z_{\tau } z_{s}^{*} ){\fancyscript{M}}[O(t,s,z^{*} )P_{t} ], \\ {\fancyscript{M}}(z_{\tau }^{*} P_{t} ) & = \int\limits_{0}^{t} ds{\fancyscript{M}}(z_{\tau }^{*} z_{s} ){\fancyscript{M}}[P_{t} O^{\dag } (t,s,z)]. \\ \end{aligned} $$

In the limit \( \tau = t \), we obtain

$$ \begin{aligned} {\fancyscript{M}}(z_{t} P_{t} ) & = {\fancyscript{M}}(\bar{O} (t,z^{*} )P_{t} ), \\ {\fancyscript{M}}(z_{t}^{*} P_{t} ) & = {\fancyscript{M}}(P_{t} \bar{O}^{\dag } (t,z)). \\ \end{aligned} $$
(25.58)

Appendix 2

Inserting the expansion series of \( O \) operator (25.27) into the \( O \) operator evolution (25.26), we have

$$ \partial_{t} O(t,s) = \partial_{t} O_{0} (t,s) + z_{t}^{*} O_{1} (t,s,t) + \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \partial_{t} O_{1} (t,s,_{1} ) + \cdots , $$
(25.59)

for the left hand side. Furthermore, the right hand side of (25.26) can be expanded as

$$ \begin{aligned} & \quad [ - iH_{sys} + Lz_{t}^{*} - L^{\dag } \bar{O} ,{\kern 1pt} O] - L^{\dag } \frac{{\delta \bar{O} }}{{\delta z_{s}^{*} }} \\ & = [ - iH_{sys} + Lz_{t}^{*} - L^{\dag } \bar{O}_{0} ,{\kern 1pt} O_{0} ] - L^{\dag } \frac{\delta }{{\delta z_{s}^{*} }}\int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} O_{1} (t,\tau ,s_{1} ) \\ & \quad + [ - iH_{sys} + Lz_{t}^{*} ,{\kern 1pt} \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} O_{1} ] - [L^{\dag } \bar{O}_{0} ,{\kern 1pt} \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} O_{1} ] - [L^{\dag } \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \bar{O}_{1} ,\,\bar{O}_{0} ] \\ & \quad - L^{\dag } \frac{\delta }{{\delta z_{s}^{*} }}\int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} \int\limits_{0}^{t} ds_{2} z_{{s_{1} }}^{*} z_{{s_{2} }}^{*} O_{2} (t,\tau ,s_{1} ,s_{2} ) \\ & \quad + \cdots . \\ \end{aligned} $$
(25.60)

By the definition \( \bar{O} = \int_{0}^{t} ds\alpha (t,s)O(t,s,z^{*} ) \), we can calculate the terms

$$ \begin{aligned} & \frac{\delta }{{\delta z_{s}^{*} }}\int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} O_{1} (t,\tau ,s_{1} ) \\ = & \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} \delta (s,s_{1} )O_{1} (t,\tau ,s_{1} ) \\ = & \int\limits_{0}^{t} d\tau \alpha (t,\tau )O_{1} (t,\tau ,s) = \bar{O}_{1} (t,s), \\ \end{aligned} $$

and

$$ \begin{aligned} & \quad \frac{\delta }{{\delta z_{s}^{*} }}\int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} \int\limits_{0}^{t} ds_{2} z_{{s_{1} }}^{*} z_{{s_{2} }}^{*} O_{2} (t,\tau ,s_{1} ,s_{2} ) \\ & = \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} \int\limits_{0}^{t} ds_{2} z_{{s_{1} }}^{*} \delta (s,s_{2} )O_{2} (t,\tau ,s_{1} ,s_{2} ) \\ & + \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} \int\limits_{0}^{t} ds_{2} z_{{s_{2} }}^{*} \delta (s,s_{1} )O_{2} (t,\tau ,s_{1} ,s_{2} ) \\ & = \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} O_{2} (t,\tau ,s_{1} ,s) + \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{2} z_{{s_{2} }}^{*} O_{2} (t,\tau ,s,s_{2} ) \\ & = \int\limits_{0}^{t} d\tau \alpha (t,\tau )\int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \left( {O_{2} (t,\tau ,s_{1} ,s) + O_{2} (t,\tau ,s,s_{1} )} \right) \\ & = \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \left( {\bar{O}_{2} (t,s_{1} ,s) + \bar{O}_{2} (t,s,s_{1} )} \right). \\ \end{aligned} $$

Equating the two sides for each order of noise \( z^{*} \), we obtain a set of dynamical equations for the \( O_{n} \) \( (n = 1,2, \ldots ) \). For the non-noise term, we have

$$ \partial_{t} O_{0} = [ - iH_{sys} - L^{\dag } \bar{O}_{0} ,{\kern 1pt} O_{0} ] - L^{\dag } \bar{O}_{1} . $$

For the first-order noise terms, we have

$$ \begin{aligned} & \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \partial_{t} O_{1} \\ = & \int\limits_{0}^{t} ds_{1} z_{{s_{1} }}^{*} \left\{ {[ - iH_{sys} L^{\dag } \bar{O}_{0} ,{\kern 1pt} O_{1} ] - [L^{\dag } \bar{O}_{1} ,{\kern 1pt} O_{0} ] - L^{\dag } \left( {\bar{O}_{2} (t,s_{1} ,s) + \bar{O}_{2} (t,s,s_{1} )} \right)} \right\}, \\ \end{aligned} $$

and the evolution equation for \( O_{1} \) is obtained as

$$ \partial_{t} O_{1} = [ - iH_{sys} - L^{\dag } \bar{O}_{0} ,{\kern 1pt} O_{1} ] - [L^{\dag } \bar{O}_{1} ,{\kern 1pt} O_{0} ] - L^{\dag } \left( {\bar{O}_{2} (t,s_{1} ,s) + \bar{O}_{2} (t,s,s_{1} )} \right). $$

Similarly, the set of coupled dynamical equations for all \( O_{n} \) can be determined sequentially. For the terms containing \( z_{t}^{*} \), the boundary conditions can be obtained as

$$ \begin{aligned} O_{1} (t,s,t) & = [L,{\kern 1pt} O_{0} (t,s)], \\ O_{2} (t,s,s_{1} ,t) + O_{2} (t,s,t,s_{1} ) & = [L,O_{1} (t,s,s_{1} )], \\ etc. & \\ \end{aligned} $$

Appendix 3

In order to explicitly derive the \( R(t) \) for the three-qubit system model, we need to calculate two terms \( {\fancyscript{M}}\{ z_{{s_{1} }} P_{t} \} \) and \( {\fancyscript{M}}\{ z_{{s_{1} }} z_{{s_{3} }} P_{t} \} \). Since the term \( {\fancyscript{M}}\{ z_{{s_{1} }} z_{{s_{3} }} P_{t} \} \) contains second order of noise, it can be evaluated by using Novikov’s theorem twice (25.18).

$$ \begin{aligned} {\fancyscript{M}}\{ z_{{s_{1} }} P_{t} \} & = \int\limits_{0}^{t} ds_{2} \alpha (s_{1} ,s_{2} ){\fancyscript{M}}\{ O(t,s_{2} )P_{t} \} \\ & = \int\limits_{0}^{t} ds_{2} \alpha (s_{1} ,s_{2} )\left[ {O_{0} (t,s_{2} )\rho_{t} + \int\limits_{0}^{t} ds_{3} O_{1} (t,s_{2} ,s_{3} ){\fancyscript{M}}\{ z_{{s_{3} }}^{*} P_{t} \} } \right] \\ & \quad + \int\limits_{0}^{t} ds_{2} \alpha (s_{1} ,s_{2} )\int\limits_{0}^{t} ds_{3} \int\limits_{0}^{t} ds_{5} O_{2} (t,s_{2} ,s_{3} ,s_{5} ){\fancyscript{M}}\{ z_{{s_{3} }}^{*} z_{{s_{5} }}^{*} P_{t} \} , \\ {\fancyscript{M}}\{ z_{{s_{1} }} z_{{s_{3} }} P_{t} \} & = \int\limits_{0}^{t} ds_{2} \alpha (s_{1} ,s_{2} ){\fancyscript{M}}\{ z_{{s_{3} }} O(t,s_{2} )P_{t} \} \\ & = \int\limits_{0}^{t} ds_{2} \int\limits_{0}^{t} ds_{4} \alpha (s_{1} ,s_{2} )\alpha (s_{3} ,s_{4} ){\fancyscript{M}}\left\{ \frac{{\delta O(t,s_{2} )}}{{\delta z_{{s_{4} }}^{*} }}P_{t} \right\} \\ & \quad + \int\limits_{0}^{t} ds_{2} \int\limits_{0}^{t} ds_{4} \alpha (s_{1} ,s_{2} )\alpha (s_{3} ,s_{4} ){\fancyscript{M}}\{ O(t,s_{2} )O(t,s_{4} )P_{t} \} . \\ \end{aligned} $$

After eliminating the zero terms by the “forbidden conditions”, \( R(t) \) can be explicitly shown as (25.54).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Y., Yu, T. (2016). Non-Markovian Dynamics of Qubit Systems: Quantum-State Diffusion Equations Versus Master Equations. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_25

Download citation

Publish with us

Policies and ethics