Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanomedicine is application of nanotechnology to diagnosis, treatment and prevention of diseases, in which multidisciplinary approaches are used combining chemistry, physics, biology, genetics, and medicine. Currently, there are a number of approved nanomedicines some of which have been developed to treat diseases using two main different approaches; passive or active targeting. Others include in vitro and in vivo diagnostic nanoparticles that have been shown to have many advantages compared to the traditional methods. Although there are some safety issues regarding development and use of nanoparticles in medicine and controversies surrounding the need for nanomedicine-specific regulations; many nanomedicines have been approved to date, and further improvements are being pursued with promising success. In this chapter, we summarise the use, advantages, current and future statuses of pharmaceutical and diagnostic nanomedicines, including ethical issues and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. European Science Foundation’s Forward Look Nanomedicine: An EMRC Consensus Opinion (2005). http://www.esf.org

  2. V. Wagner, B. Hüsing, S. Gaisser, Nanomedicine: Drivers for development and possible impacts. European Commission’s (EC) Joint Research Centre (JRC) Report No. 46744, 1–116 (2008)

    Google Scholar 

  3. G. Gregoriadis, B.E. Ryman, Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem. J. 124, 58P (1971)

    Google Scholar 

  4. P.D. Brown, P.R. Patel, Nanomedicine: a pharma perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7, 125–130 (2015)

    Google Scholar 

  5. The European Science Foundation, Nanomedicine: An ESF—European Medical Research Councils (EMRC) Forward Look report (2005). http://www.esf.org

  6. Commission of the European Communities Communication, Towards a European Strategy for Nanotechnology. EU, DG Research, Brussels, (2004). www.cordis.lu/nanotechnology

  7. National Institutes of Health, NIH roadmap: nanomedicine. NIH, USA, (2004). http://nihroadmap.nih.gov

  8. National Institutes of Health—National Cancer Institute, Cancer nanotechnology plan: a strategic initiative to transform clinical oncology and basic research through the directed application of nanotechnology, NCI, NIH, USA, (2004). http://nano.cancer.gov/alliance_cancer_nanotechnology_plan.pdf

  9. World Health Organization, 10 facts on noncommunicable diseases, (2013). http://www.who.int

  10. F.S. Collins, We need better drugs—now. TEDMed Conference (Long Beach, CA, USA, 2012)

    Google Scholar 

  11. T. Bartfai, G.V. Lees, The Future of Drug Discovery: Who Decides which Diseases to Treat? (Academic Press, 2013)

    Google Scholar 

  12. D.T. Okuda, A. Siva, O. Kantarci, M. Inglese, I. Katz, M. Tutuncu, B.M. Keegan, S. Donlon, H. Hua le, A. Vidal-Jordana, X. Montalban, A. Rovira, M. Tintoré, M.P. Amato, B. Brochet, J. de Seze, D. Brassat, P. Vermersch, N. De Stefano, M.P. Sormani, D. Pelletier, C. Lebrun, Radiologically Isolated Syndrome Consortium (RISC), Club Francophone de la Sclérose en Plaques (CFSEP) Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One 9, e90509 (2014)

    Google Scholar 

  13. Y. Matsumura, H. Maeda, A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent smancs. Cancer Res. 6, 6387–6392 (1986)

    Google Scholar 

  14. Y. Barenholz, Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control Releas. 160, 117–134 (2012)

    Google Scholar 

  15. J. Vaage, E. Barberá-Guillem, R. Abra, A. Huang, P. Working, Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 73, 1478–1484 (1994)

    Google Scholar 

  16. A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, Y. Barenholz,  Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992 (1994)

    Google Scholar 

  17. L.W. Seymour, D.R. Ferry, D. Anderson, S. Hesslewood, P.J. Julyan, R. Poyner, J. Doran, A.M. Young, S. Burtles, D.J. Kerr, Cancer Research Campaign Phase I/II Clinical Trials committee, Hepatic drug targeting: phase I evaluation of polymer bound doxorubicin. J. Clin. Oncol. 20, 1668–1676 (2002)

    Google Scholar 

  18. B. Wood, R.T.P. Poon, Z. Neeman, M. Eugeni, J. Locklin, S. Dromi, S. Kachala, R. Probhakar, W. Hahne, S.K. Libutti, Phase I study of thermally sensitive liposomes containing doxorubicin (ThermoDox [TD]) given during radiofrequency ablation (RFA) in patients with unresectable hepatic malignancies. ASCO Gastrointestinal Cancers Symposium (2007). abstr. 188

    Google Scholar 

  19. ClinicalTrials.gov, a service of the U.S National Institutes of Health. http://clinicaltrials.gov

  20. D. Sarker, P. Workman (2007) Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv. Cancer Res. 96, 213–268 

    Google Scholar 

  21. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Jr Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. 107, 18392–18397 (2010)

    Google Scholar 

  22. M.S. Muthu, S.A. Kulkarni, A. Raju, S.S. Feng, Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33, 3494–3501 (2012)

    Google Scholar 

  23. G. Oberdörster, Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8 (2001)

    Google Scholar 

  24. P. Jani, G.W. Halbert, J. Langridge, A.T. Florence, Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 42, 821–826 (1990)

    Google Scholar 

  25. J. Lademann, H. Weigmann, C. Rickmeyer, H. Barthelmes, H. Schaefer, G. Mueller, W. Sterry, Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12, 247–256 (1999)

    Google Scholar 

  26. G. Oberdörster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, A. Lunts, W. Kreyling, C. Cox, Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 65, 1531–1543 (2002)

    Google Scholar 

  27. R. Gaspar, R. Duncan, Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv. Drug Deliv. Rev. 61, 1220–1231 (2009)

    Google Scholar 

  28. M. Eaton, Nanomedicine: industry-wise research. Nat. Mater. 6, 251–253 (2007)

    Google Scholar 

  29. R. Nijhara, K. Balakrishnan, Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomed 2, 127–136 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eda Tahir Turanlı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turanlı, E.T., Everest, E. (2016). Nanomedicine. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_23

Download citation

Publish with us

Policies and ethics