Skip to main content

Bionanotechnology: Lessons from Nature for Better Material Properties

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2451 Accesses

Abstract

For millions of years, nature has built hierarchically organized intricate systems with interesting material properties that synthetic materials often fail to replicate. With the advances in instrumentation for both characterization and manipulation in nano-scale, it has now become possible to comprehend the molecular mechanisms and structures behind that success and mimic them. Biomimicry should not be understood as a superficial imitation of the biological systems. It should rather be interpreted as the inspiration from the structure-function relationships observed in biological systems to construct new hierarchical structures with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Billard, J. Matari, Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton. Syst. 941, 1–16 (2001)

    Google Scholar 

  2. X. Li, H. Xu, Z.S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 270974 (16 pp) (2011)

    Google Scholar 

  3. G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Google Scholar 

  4. J.H. Zhang, Y.R. Zhao, S.Y. Han, C.X. Chen, H. Xu, Self-assembly of surfactant-like peptides and their applications. Sci. China Chem. 57, 1634–1645 (2014)

    Google Scholar 

  5. A. Rawat, R. Nagaraj, Covalently attached fatty acyl chains alter the aggregation behavior of an amyloidogenic peptide derived from human ß(2)-microglobulin. J. Pept. Sci. 12, 770–783 (2013)

    Google Scholar 

  6. M. Barboiu, Constitutional hybrid materials—Toward selection of functions. Eur. J. Inorg. Chem. 2015, 1112–1125 (2015)

    Google Scholar 

  7. S. Lapidot, S. Meirovitch, S. Sharon, A. Heyman, D.L. Kaplan, O. Shoseyov, Clues for biomimetics from natural composite materials. Nanomedicine 7, 1409–1423 (2012)

    Google Scholar 

  8. M. Hnilova, B. Taktak Karaca, J. Park, C. Jia, B.R. Wilson, M. Sarikaya, C. Tamerler, Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol. Bioeng. 109, 1120–1130 (2012)

    Google Scholar 

  9. L. Addadi, S. Weiner, Biomineralization: mineral formation by organisms. Phys. Scr. 89, 098003 (13 pp) (2014)

    Google Scholar 

  10. T.-Y. Ning, X.-H. Xu, L.-F. Zhu, X.-P. Zhu, C.H. Chu, L.-K. Liu, Q.-L. Li, Biomimetic mineralization of dentin induced by agarose gel loaded with calcium phosphate. J. Biomed. Mater. Res., Part B 100B, 138–144 (2012)

    Google Scholar 

  11. J. Baumgartner, M.A. Carillo, K.M. Eckes, P. Werner, D. Faivre, Biomimetic magnetite formation: from biocombinatorial approaches to mineralization effects. Langmuir 30, 2129–2136 (2014)

    Google Scholar 

  12. A. Sinha, T. Mishra, N. Ravishankar, Polymer assisted hydroxyapatite microspheres suitable for biomedical application. J. Mater. Sci. Mater. Med. 19, 2009–2013 (2008)

    Google Scholar 

  13. S. Onder, A.C. Calikoglu-Koyuncu, K. Kazmanli, M. Urgen, G.T. Kose, F.N. Kok, Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti, Mg)N coatings. New Biotechnol. (2015). doi:10.1016/j.nbt.2014.11.006

    Article  Google Scholar 

  14. J.M. Galloway, J.P. Bramble, S.S. Staniland, Biomimetic synthesis of materials for technology. Chem. Eur. J. 19, 8710–8725 (2013)

    Google Scholar 

  15. S. Schweizer, A. Taubert, Polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution. Macromol. Biosci. 7, 1085–1099 (2007)

    Google Scholar 

  16. M. Hildebrand, Diatoms, biomineralization processes, and genomics. Chem. Rev. 108, 4855–4874 (2008)

    Google Scholar 

  17. J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen, Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. USA 101, 3358–3363 (2004)

    Google Scholar 

  18. K. Bleek, A. Taubert, New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater. 9, 6283–6321 (2013)

    Google Scholar 

  19. M. Gungormus, E.E. Oren, J.A. Horst, H. Fong, M. Hnilova, M.J. Somerman, M.L. Snead, R. Samudrala, C. Tamerler, M. Sarikaya, Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides. Int. J. Oral Sci. 4, 69–77 (2012)

    Google Scholar 

  20. E.E. Oren, C. Tamerler, D. Sahin, M. Hnilova, U.O.S. Seker, M. Sarikaya, R. Samudrala, A novel knowledge-based approach to design inorganic-binding peptides. Bioinformatics 23, 2816–2822 (2007)

    Google Scholar 

  21. J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M.J. Sadowsky, H.-G. Hur, N.V. Myung, Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater. 6, 2681–2689 (2010)

    Google Scholar 

  22. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)

    Google Scholar 

  23. F.L. Dickert, Biomimetic receptors and sensors. Sensors 14, 22525–22531 (2014)

    Google Scholar 

  24. C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O’Mahony, M.J. Whitcombe, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recog. 19, 106–180 (2006)

    Google Scholar 

  25. G. Wackers, T. Vandenryt, P. Cornelis, E. Kellens, R. Thoelen, W. de Ceuninck, P. Losada-Pérez, B. van Grinsven, M. Peeters, P. Wagner, Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers. Sensors 14, 11016–11030 (2014)

    Google Scholar 

  26. M. Resmini, Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal. Chem. 402, 3021–3026 (2012)

    Google Scholar 

  27. S.W. Kowalczyk, T.R. Blosser, C. Dekker, Biomimetic nanopores: learning from and about nature. Trends Biotechnol. 29, 607–614 (2011)

    Google Scholar 

  28. S. Howorka, Z. Siwy, Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009)

    Google Scholar 

  29. T. Nowotny, M. de Bruyne, A.Z. Berna, C.G. Warr, S.C. Trowell, Drsophila olfactory receptors as classifiers for volatiles from disparate real world applications. Bioinspir. Biomim. 9, 046007 (13 pp) (2014)

    Google Scholar 

  30. E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J. Li, J. Yang, M. Mayer, Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011)

    Google Scholar 

  31. Y. Jin, H. Tai, A. Hiltner, E. Baer, J.S. Shirk, New class of bioinspired lenses with a gradient refractive index. J. Appl. Polym. Sci. 103, 1834–1841 (2007)

    Google Scholar 

  32. H. Ren, S.-T. Wu, Adaptive liquid crystal lens with large focal length tenability. Opt. Express 14, 11292–11298 (2006)

    Google Scholar 

  33. K. Lee, W. Wagermaier, A. Masic, K.P. Kommareddy, M. Bennet, I. Manjubala, S.-W. Lee, S.B. Park, H. Colfen, P. Fratzl, Self-assembly of amorphous calcium carbonate microlens arrays. Nat. Commun. 3, 725 (2012)

    Google Scholar 

  34. D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. B 273, 661–667 (2006)

    Google Scholar 

  35. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, J.P. Spatz, Tailored antireflective biomimetic nanostructures for UV applications. Nanotechnology 21, 425301 (2010)

    Google Scholar 

  36. R. Dewan, S. Fischer, W.B. Meyer-Rochow, Y. Ozdemir, S. Hamraz, D. Knipp, Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspiration Biomimetics 7, 016003 (2012)

    Google Scholar 

  37. P.W. King, Designing interfaces of hydrogenase–nanomaterial hybrids for efficient solar conversion. Bioch. Biophys. Acta 1827, 949–957 (2013)

    Google Scholar 

  38. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui, Brilliant blue observation from a morpho-butterfly-scale quasi-structure. Jap. J. Appl. Phys. 44, L48–L50 (2005)

    Google Scholar 

  39. J. Xu, Z. Guo, Biomimetic photonic materials with tunable structural colors. J. Colloid Interf Sci. 406, 1–17 (2013)

    Google Scholar 

  40. K. Yu, T. Fan, S. Lou, D. Zhang, Biomimetic optical materials: Integration of nature’s design for manipulation of light. Prog. Mater Sci. 58, 825–873 (2013)

    Google Scholar 

  41. A.E. Seago, P. Brady, J.-P. Vigneron, T.D. Schultz, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 6, S165–S184 (2009)

    Google Scholar 

  42. http://www.nanotechproject.org/cpi/products/morphotex-r-fiber/

  43. M. Rassart, J.-F. Colomer, T. Tabarrant, J.P. Vigneron, Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules. New J. Phys. 10, 033014 (14 pp) (2008)

    Google Scholar 

  44. J.-W. Oh, W.-J. Chung, K. Heo, H.-E. Jin, B.Y. Lee, E. Wang, C. Zueger, W. Wong, J. Meyer, C. Kim, S.-Y. Lee, W.-G. Kim, M. Zemla, M. Auer, A. Hexemer, S.-W. Lee, Biomimetic virus-based colourimetric sensors. Nat. Commun. 5, 3043 (2014)

    Google Scholar 

  45. N. Bandara, H. Zeng, J. Wu, Marine mussel adhesion: biochemistry, mechanisms, and biomimetics. J. Adhesion Sci. Technol. 27, 2139–2162 (2013)

    Google Scholar 

  46. H.J. Cha, D.S. Hwang, S. Lim, Development of bioadhesives from marine mussels. Biotech. J. 3, 631–638 (2008)

    Google Scholar 

  47. J.H. Waite, Adhesion a la moule. Integr. Comp. Biol. 42, 1172–1180 (2002)

    Google Scholar 

  48. Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T.H. Anderson, J.H. Waite, J.N. Israelachvili, Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. PNAS USA 104, 3782–3786 (2007)

    Google Scholar 

  49. S. Haemers, G.J.M. Koper, G. Frens, Effect of oxidation rate on cross-linking of mussel adhesive proteins. Biomacromolecules 4, 632–640 (2003)

    Google Scholar 

  50. D.S. Hwang, Y. Gim, H.J. Yoo, H.J. Cha, Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 28, 3560–3568 (2007)

    Google Scholar 

  51. D.S. Hwang, H. Zeng, A. Masic, M.J. Harrington, J.N. Israelachvili, J.H. Waite, Protein and metal dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 285, 25850–25858 (2010)

    Google Scholar 

  52. D. Hwang, H. Zeng, A. Srivastava, D.V. Krogstad, M. Tirrell, J.N. Israelachvili, J.H. Waite, Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. Soft Matter 6, 3232–3236 (2010)

    Google Scholar 

  53. H.G. Silverman, F.F. Roberto, Understanding marine mussel adhesion. Marine Biotechnol. 9, 661–681 (2007)

    Google Scholar 

  54. M. Yu, T. DeSimone, T.J. Deming, Synthetic analogs of marine mussel cement protein. Polym. Prepar. 38, 101–102 (1997)

    Google Scholar 

  55. A. Bourmaud, J. Riviere, D. Le Antoine, G. Raj, C. Baley, Investigations of the use of a musselinspired compatibilizer to improve the matrix-fiber adhesion of a biocomposites. Polym. Testing 28, 668–672 (2009)

    Google Scholar 

  56. B. Chang, M. Zhang, G. Qing, T. Sun, Dynamic biointerfaces: from recognition to function. Small 11, 1097–1112 (2015)

    Google Scholar 

  57. J. Zhao, X. Zhao, Z. Jianga, Z. Li, X. Fana, J. Zhu, H. Wu, Y. Su, D. Yang, F. Pan, J. Shi, Biomimetic and bioinspired membranes: preparation and application. Prog. Polym. Sci. 39, 1668–1720 (2014)

    Google Scholar 

  58. B. Bhushan, R.A. Sayer, Surface characterization and friction of a bio-inspired reversible adhesive tape. Microsyst. Technol. 13, 71–78 (2007)

    Google Scholar 

  59. C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)

    Google Scholar 

  60. W.R. Hansen, K. Autumn, Evidence for self-cleaning in gecko setae. PNAS 102, 385–389 (2005)

    Google Scholar 

  61. T.S. Kustandi, V.D. Samper, W.S. Ng, A.S. Chong, H. Ga, Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J. Micromech. Microeng. 17, 75–81 (2007)

    Google Scholar 

  62. Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23, 4270–7273 (2011)

    Google Scholar 

  63. S. Sethi, L. Ge, L. Ci, P.M. Ajayan, A. Dhinojwala, Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett. 8, 822–825 (2008)

    Google Scholar 

  64. S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, H.-B. Sun, One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting. Langmuir 26, 12012–12016 (2010)

    Google Scholar 

  65. W.-S. Guan, H.-X. Huang, A.-F. Chen, Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation. J. Micromech. Microeng. 25, 035001 (9 pp) (2015)

    Google Scholar 

  66. D.F. Williams, There is no such thing as a biocompatible material. Biomaterials 35, 10009–10014 (2014)

    Google Scholar 

  67. D. Singh, D. Singh, S. Zo, S.S. Han, Nano-biomimetics for nano/micro tissue regeneration. J. Biomed. Nanotechnol. 10, 3141–3161 (2014)

    Google Scholar 

  68. H. Yazici, H. Fong, B. Wilson, E.E. Oren, F.A. Amos, H. Zhang, J.S. Evans, M.L. Snead, M. Sarikaya, C. Tamerler, Biological response on a titanium implant-grade surface functionalized with modular peptides. Acta Biomater. 9, 5341–5352 (2013)

    Google Scholar 

  69. Y. Zhou, M.L. Snead, C. Tamerler, Bio-inspired hard-to-soft interface for implant integration to bone. Nanomed. Nanotech. Bio Med. 11, 431–434 (2015)

    Google Scholar 

  70. A.E. Sorkio, E.P. Vuorimaa-Laukkanen, H.M. Hakola, H. Liang, T.A. Ujula, J.J. Valle-Delgado, M. Osterberg, M.L. Yliperttula, H. Skottman, Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials 51, 257–269 (2015)

    Google Scholar 

  71. Y. Dayani, N. Malmstadt, Liposomes with double-stranded DNA anchoring the bilayer to a hydrogel Core. Biomacromolecules 14, 3380–3385 (2013)

    Google Scholar 

  72. I.G. Denisov, Y.V. Grinkova, A.A. Lazarides, S.G. Sligar, Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004)

    Google Scholar 

  73. F. Hagn, G. Wagner, Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J. Biomol. NMR 61, 249–260 (2015)

    Google Scholar 

  74. R.P. Richter, J.L.K. Him, A. Brisson, Supported lipid membranes. Mater Today 6, 32–37 (2003)

    Google Scholar 

  75. J.A. Jackman, W. Knoll, N.-J. Cho, Biotechnology applications of tethered lipid bilayer membranes. Materials 5, 2637–2657 (2012)

    Google Scholar 

  76. E.-K. Sinner, U. Reuning, F.N. Kok, B. Saccà, L. Moroder, W. Knoll, D. Oesterhelt, Incorporation of integrins into artificial planar lipid membranes: characterization by plasmon-enhanced fluorescence spectroscopy. Anal. Biochem. 333, 216–224 (2004)

    Google Scholar 

  77. F. Inci, U. Celik, B. Turken, H.O. Özer, F.N. Kok, Construction of p-glycoprotein incorporated tethered lipid bilayer membranes. Biochem. Biophys. Rep. (2015). doi:10.1016/j.bbrep.2015.05.012

    Article  Google Scholar 

  78. S. Rebaud, O. Maniti, A.P. Girard-Egrot, Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations. Biochimie 107, 135–142 (2014)

    Google Scholar 

  79. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein. Aquaporin Z. Proc. Natl. Acad. Sci. USA 104, 20719–20724 (2007)

    Google Scholar 

  80. M. Grzelakowski, M.F. Cherenet, Y.-X. Shen, M. Kumar, A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J. Membr. Sci. 479, 223–231 (2015)

    Google Scholar 

  81. P. Agre, Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. 43, 4278–4290 (2004)

    Google Scholar 

  82. P.H.H. Duong, T.S. Chung, K. Jeyaseelan, A. Armugam, Z. Chen, Hong M. YangJ, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 409–410, 34–43 (2012)

    Google Scholar 

  83. P.S. Zhong, T.S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 407–408, 27–33 (2012)

    Google Scholar 

  84. X. Li, R. Wang, F. Wicaksana, C. Tang, J. Torres, A.G. Fane, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci. 450, 181–188 (2014)

    Google Scholar 

  85. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008)

    Google Scholar 

  86. A. Hagenau, M.H. Suhrea, T.R. Scheibel, Nature as a blueprint for polymer material concepts: Protein fiber-reinforced composites as holdfasts of mussels. Prog. Polym. Sci. 39, 1564–1583 (2014)

    Google Scholar 

  87. A. Miserez, J.C. Weaver, O. Chaudhurid, Biological materials and molecular biomimetics –filling up the empty soft materials space for tissue engineering applications. J. Mater. Chem. B 3, 13–24 (2015)

    Google Scholar 

  88. M.E. Launey, R.O. Ritchie, On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009)

    Google Scholar 

  89. G. Mayer, Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005)

    Google Scholar 

  90. N. Funk, M. Vera, L.J. Szewciw, F. Barthelat, M.P. Stoykovich, F.J. Vernerey, Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials. ACS Appl. Mater. Interfaces 7, 5972–5983 (2015)

    Google Scholar 

  91. D.G. Elliott, In the laboratory fish. In: G.K. Ostrander (ed.) Academic Press, San Diego, Chap. 5, p. 99 (2000)

    Google Scholar 

  92. D. Zhu, L. Szewciw, F. Vernerey, F. Barthelat, Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs. J. Mech. Behav. Biomed. Mater. 24, 30–40 (2013)

    Google Scholar 

  93. U.B. Sleytr, B. Schuster, E.-M. Egelseer, D. Pum, S-layers: principles and applications. FEMS Microbiol. Rev. 38, 823–864 (2014)

    Google Scholar 

  94. B. Schuster, U.B. Sleytr, Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J. R. Soc. Interface 11, 20140232 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Kök .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kök, F.N. (2016). Bionanotechnology: Lessons from Nature for Better Material Properties. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_21

Download citation

Publish with us

Policies and ethics