Skip to main content

Semiconducting Carbon Nanotubes: Properties, Characterization and Selected Applications

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Carbon nanotubes are challenging materials from the point of view of nanotechnology, because of their peculiar electrical, mechanical and optical properties arising from their monodimensional geometry. Here, the properties of carbon nanotubes are discussed, starting from their crystalline structure, in order to understand their optical, electrical and vibrational behavior. In the second section, the most popular CNT synthesis mechanism are presented, while the last section is devoted to the CNTs applications, focusing on photovoltaic and gas sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Endo. Mecanisme de croissance en phase vapeur de bres de carbone (The growth mechanism of vapor-grown carbon fibers). Ph.D. thesis, University of Orleans, Orleans, France, 1975. (in French)

    Google Scholar 

  2. M. Endo. Ph.D. thesis, Nagoya University, Japan, 1978. (in Japanese)

    Google Scholar 

  3. S. Iijima, J. Cryst. Growth 55, 675–683 (1980)

    ADS  Google Scholar 

  4. A. Oberlin, M. Endo, T. Koyama, Carbon 14, 133 (1976)

    Google Scholar 

  5. A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32, 335–349 (1976)

    ADS  Google Scholar 

  6. S. Iijima, Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  7. M.S. Dresselhaus, G. Dresselhaus, Ph Avouris, Carbon Nanotubes. Synthesis, Structure Properties, and Applications (Springer, 2001)

    Google Scholar 

  8. P. Castrucci, C. Scilletta, S. Del Gobbo, M. Scarselli, L. Camilli, M. Simeoni, B. Delley, A. Continenza, M. De Crescenzi, Nanotechnology 22, 115701 (2011)

    ADS  Google Scholar 

  9. I. Stemmler, C. Backes, Absorption Spectroscopy as a Powerful Technique for the Characterization of Single-Walled Carbon Nanotubes (White paper, PerkinElmer, 2013)

    Google Scholar 

  10. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    ADS  Google Scholar 

  11. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872 (2011)

    Google Scholar 

  12. N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014)

    ADS  Google Scholar 

  13. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)

    ADS  Google Scholar 

  14. M. Pacheco, J. Pacheco, M. Valdivia, L. Bernal, R. Valdivia, A. Huczko, H. Lange, A. Cruz, R. Lopez-Callejas, Synthesis of Carbon Nanostructures by Using Thermal Plasma Torch. Braz. J. Phys. 34, 4B (2004)

    Google Scholar 

  15. J. Kong, A.M. Cassell, Hongjie Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998)

    ADS  Google Scholar 

  16. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon Nanotubes: Present and Future Commercial Applications. Science 339(6119), 535–539 (2013)

    ADS  Google Scholar 

  17. M. Meyyappan (ed.), Carbon Nanotubes: Science and Applications (CRC Press, 2005)

    Google Scholar 

  18. A. Javey, J. Kong (eds.), Carbon Nanotube Electronics (Springer Science + Business Media, 2009)

    Google Scholar 

  19. Dirk M. Guldi and Nazario Martín (eds.), Carbon Nanotubes and Related Structures, Synthesis, Characterization, Functionalization, and Applications (Wiley-VHC, 2010)

    Google Scholar 

  20. S. Yamashita, Y. Saito, J.H. Choi (eds.) Carbon Nanotubes and graphene for photonics applications (Woodhead Publishing, 2013)

    Google Scholar 

  21. C. Hierold (ed.), Advanced Micro & Nanosystems, vol. 8, Carbon Nanotube Devices: Properties, Modeling, Integration and Applications (Wiley-VHC, Weinheim, 2008)

    Google Scholar 

  22. Rüdiger Klingeler Robert, B. Sim (eds.), Carbon Nanotubes for Biomedical Applications (Springer, Berlin, Heidelberg, 2011)

    Google Scholar 

  23. Tony McNally, Petra Potschke (eds.), Polymer Carbon Nanotube Composites: Preparation: Properties and Applications (Woodhead Publishing, London, 2011)

    Google Scholar 

  24. Amin Salehi-Khojin, Fatemeh Khalili-Araghi, Marcelo A. Kuroda, Kevin Y. Lin, Jean-Pierre Leburton, Richard I. Masel, On the sensing mechanism in carbon nanotube chemiresistors. ACS Nano 5(1), 153–158 (2011)

    Google Scholar 

  25. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai. Science 287, 622 (2000)

    Google Scholar 

  26. D.D. Tune, B.S. Flavel, R. Krupke, J.G. Shapter, Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2, 1043–1055 (2012)

    Google Scholar 

  27. P. Castrucci, Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices. Adv. Nano Res. 2, 23–56 (2014)

    Google Scholar 

  28. D.D. Tune, F. Hennrich, S. Dehm, M.F.G. Klein, K. Glaser, A. Colsmann, J.G. Shapter, U. Lemmer, M.M. Kappes, R. Krupke, B.S. Flavel, The role of nanotubes in carbon nanotube-silicon solar cells. Adv. Energy Mater. 3, 1091–1097 (2013)

    Google Scholar 

  29. P.L. Mc Euen, J.Y. Park, Electron transport in single-walled carbon nanotubes. MRS Bull. 29, 272–275 (2004)

    Google Scholar 

  30. S. Ponzoni, G. Galimberti, L. Sangaletti, P. Castrucci, S. Del Gobbo, M. Morbidoni, M. Scarselli, S. Pagliara, Selective optical switching of interface-coupled relaxation dynamics in carbon nanotube–Si heterojunctions. J. Phys. Chem. C 118, 24110–24116 (2014)

    Google Scholar 

  31. E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, S. Zhang, A. Cao, TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15 %. Sci. Rep. 2(884), 1–5 (2012)

    Google Scholar 

  32. Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, D. Wu, Strong and reversible modulation of carbon nanotube-silicon heterojunctions solar cells by an interfacial oxide layer. Phys. Chem. Chem. Phys. 14, 8391–8396 (2012)

    Google Scholar 

  33. D.D. Tune, A.J. Blanch, R. Krupke, B.S. Flavel, J.G. Shapter, Nanotube film metallicity and its effect on the performance of carbon nanotube-silicon solar cells. Phys. Status Solidi A 211, 1479–1487 (2014)

    ADS  Google Scholar 

  34. Y. Jung, X. Li, N.K. Rajan, A.D. Taylor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett. 13, 96–99 (2013)

    ADS  Google Scholar 

  35. P. Wadhwa, B. Liu, M.A. McCarthy, Z. Wu, A.G. Rinzler, Electronic junction control in a nanotube-semiconducting schottky junction solar cell. Nano Lett. 10, 5001–5005 (2010)

    ADS  Google Scholar 

  36. H.C. Card, Photovoltaic properties of MIS-schottky barriers. Solid State Electron. 20, 971–976 (1977)

    ADS  Google Scholar 

  37. X. Li, J.S. Huang, S. Nejati, L. McMillon, S. Huang, C.O. Osuji, N. Hazari, A.D. Taylor, Role of HF in oxygen removal from carbon nanotubes: implications for high performance carbon electronics. Nano Lett. 14, 6179–6184 (2014)

    ADS  Google Scholar 

  38. C. Pintossi, G. Salvinelli, G. Drera, S. Pagliara, L. Sangaletti, S. Del Gobbo, M. Morbidoni, M. Scarselli, M. De Crescenzi, P. Castrucci, Direct evidence of chemically inhomogeneous, nanostructured, Si–O buried interfaces and their effect on the efficiency of carbon nanotube/Si photovoltaic heterojunctions. J. Phys. Chem. C 117, 18688–18696 (2013)

    Google Scholar 

  39. C. Pintossi, S. Pagliara, G. Drera, F. De Nicola, P. Castrucci, M. De Crescenzi, M. Crivellari, M. Boscardin, L. Sangaletti, Steering the efficiency of carbon nanotube-silicon photovoltaic cells by acid vapor exposure: a real-time spectroscopic tracking. ACS Appl. Mater. Interfaces 7(18), 9436–9444 (2015)

    Google Scholar 

  40. K.A. Mirica, J.G. Weis, J.M. Schnorr, B. Esser, T.M. Swager, Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51, 10740–10745 (2012)

    Google Scholar 

  41. A. Goldoni, L. Petaccia, L. Gregoratti, B. Kaulich, A. Barinov, S. Lizzit, A. Laurita, L. Sangaletti, R. Larciprete, Carbon 42, 2099 (2004)

    Google Scholar 

  42. S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Appl. Phys. Lett. 83, 2280 (2003)

    ADS  Google Scholar 

  43. T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Nano Lett. 3, 877 (2003)

    ADS  Google Scholar 

  44. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 3, 929 (2003)

    ADS  Google Scholar 

  45. J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski, R.A. McGill, Appl. Phys. Lett. 83, 4026 (2003)

    ADS  Google Scholar 

  46. F. Picaud, C. Girardet, A.M. Rao, J. Appl. Phys. 105, 014315 (2009)

    ADS  Google Scholar 

  47. P. Vichchulada, P.Q. Zhang, M.D. Lay, Analyst 132, 719 (2007)

    ADS  Google Scholar 

  48. D.R. Kauffman, A. Star, Angew. Chem. 47, 6550 (2008)

    Google Scholar 

  49. M. Penza, R. Rossi, M. Alvisi, M.A. Signore, E. Serra, J. Phys. D Appl. Phys. 42, 072002 (2009)

    ADS  Google Scholar 

  50. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Nanotechnology 19, 332001 (2008)

    Google Scholar 

  51. A. Goldoni, L. Petaccia, S. Lizzit, R. Larciprete, J. Phys.: Condens. Matter 22, 013001 (2010)

    ADS  Google Scholar 

  52. M. Penza, R. Rossi, M. Alvisi, E. Serra, Nanotechnology 21, 105501 (2010)

    ADS  Google Scholar 

  53. M. Penza, P.J. Martin, J.T.W. Yeow, Carbon Nanotube Gas sensors, in Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, ed. by C.-D. Kohl, T. Wagner (Springer, Berlin, Heidelberg, 2014)

    Google Scholar 

  54. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000)

    ADS  Google Scholar 

  55. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)

    ADS  Google Scholar 

  56. G.U. Sumanasekera, C.K.W. Adu, S. Fang, P.C. Eklund, Phys. Rev. Lett. 85, 1096 (2000)

    ADS  Google Scholar 

  57. X.P. Tang, A. Kleinhammes, H. Shimoda, L. Fleming, K.Y. Bennoune, S. Sinha, C. Bower, O. Zhou, Y. Wu, Science 288, 492 (2000)

    ADS  Google Scholar 

  58. J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002)

    ADS  Google Scholar 

  59. H. Chang, J.D. Lee, S.M. Lee, Y.H. Lee, Appl. Phys. Lett. 79, 3863 (2001)

    ADS  Google Scholar 

  60. B.B. Shirvani, J. Beheshtian, G. Parsafar, N.L. Hadipour, Comput. Mater. Sci. 48, 655 (2010)

    Google Scholar 

  61. L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci. 21, 1996 (2003)

    Google Scholar 

  62. C.Y. Lee, S. Baik, J.Q. Zhang, R.I. Masel, M.S. Strano, J. Phys. Chem. B 110, 11055 (2006)

    Google Scholar 

  63. J. Suehiro, G.B. Zhou, M. Hara, J. Phys. D Appl. Phys. 36, 109 (2003)

    ADS  Google Scholar 

  64. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Science 307, 1942 (2005)

    ADS  Google Scholar 

  65. S. Chopra, A. Pham, J. Gaillard, A. Parker, A.M. Rao, Appl. Phys. Lett. 80, 4632 (2002)

    ADS  Google Scholar 

  66. A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Nature 424, 171 (2003)

    ADS  Google Scholar 

  67. C. Brett, Other types of sensors: Impedance-based sensors, fet sensors, acoustic sensors, in Environmental Analysis by Electrochemical Sensors and Biosensors, Nanostructure Science and Technology, eds. by L.M. Moretto, K. Kalcher (Springer, 2014), pp. 351–370

    Google Scholar 

  68. F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, Analyst 138, 7392–7399 (2013)

    ADS  Google Scholar 

  69. B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B 107, 666 (2005)

    Google Scholar 

  70. M. Chiesa, F. Rigoni, M. Paderno, P. Borghetti, G. Gagliotti, M. Bertoni, A. Ballarin, Denti, L. Schiavina, A. Goldoni and L. Sangaletti. J. Environ. Monit. 14, 1565 (2012)

    Google Scholar 

  71. G. Chen, T.M. Paronyan, E.M. Pigas, A.R. Harutyunyan, Sci. Rep. 2, 343 (2012)

    ADS  Google Scholar 

  72. T. Zhang, M.B. Nix, B.-Y. Yoo, M.A. Deshusses, N.V. Myung, Electroanalysis 18, 1153 (2006)

    Google Scholar 

  73. T. Kerdcharoen, C. Wongchoosuk, Carbon nanotube and metal oxide hybrid materials for gas sensing. in Semiconductor Gas Sensors, Woodhead Publishing Series in Electronic and Optical Materials, eds. by R. Jaaniso, O.K. Tan, pp. 386–407 (2013)

    Google Scholar 

  74. D. Eder, Carbon nanotube-inorganic hybrids. Chem. Rev. 110, 1348–1385 (2010)

    Google Scholar 

  75. C. Marichy, P.A. Russo, M. Latino, J.P. Tessonnier, M.G. Willinger, N. Donato, G. Neri, N. Pinna, Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism. J. Phys. Chem. C 117, 19729–19739 (2013)

    Google Scholar 

  76. C. Marichy, N. Donato, M.-G. Willinger, M. Latino, D. Karpinsky, S.-H. Yu, G. Neri, N. Pinna, Tin dioxide sensing layer grown on tubular nanostructures by a non-aqueous atomic layer deposition process. Adv. Funct. Mater. 21, 658–666 (2011)

    Google Scholar 

  77. E. Llobet, R. Ionescu, E.H. Espinoza, R. Leghrib, A. Felten, R. Erni, Sens. Actuators B 131, 174 (2008)

    Google Scholar 

  78. B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, H.-J. Lai, Sens. Actuators B Chem. 101, 81–89 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Sangaletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pintossi, C., Sangaletti, L. (2016). Semiconducting Carbon Nanotubes: Properties, Characterization and Selected Applications. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_10

Download citation

Publish with us

Policies and ethics