Skip to main content

Modelling of Heterostructures for Low Dimensional Devices

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Advancement in the theoretical understanding and experimental development of the science and technology of low dimensional electronic and optical devices requires qualitatively reliable and quantitatively precise theoretical modelling of the structural, electronic and optical properties of semiconducting materials and their heterostructures to predict their potential profiles. In this chapter, we review the calculation techniques of electronic band structures of III–V and II–VI compounds and their heterostructures. We focus on the semiempirical tight binding theory (with sp3, sp3s*, sp3d5s* and sp3d5 orbital sets) and density functional theory (DFT), which, in turn, employs the modified Becke-Johnson exchange-correlation potential with a local density approximation (DFT-MBJLDA). We conclude that the density functional theory and semiempirical tight binding theory can easily be employed in relation to charge transport in heterostructure devices as well as in the accurate design and simulation of low dimensional semiconductor electronic and optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H. Ünlü, N.J.M. Horing (eds.), Low Dimensional Semiconductor Structure: Characterization and Applications (Springer, Heidelberg, 2013)

    Google Scholar 

  2. H. Morkoç, H. Ünlü, G. Ji, Principles and technology of MODFETs. Wiley 1, 2 (1991)

    Google Scholar 

  3. H. Ünlü, H. Morkoç, Solid State Technol. 31, 83 (1988)

    Google Scholar 

  4. H. Morkoç, H. Ünlü, in Semiconductor and Semimetals, vol. 24 ed. by R. Dingle (1987), p. 135

    Google Scholar 

  5. H. Ünlü, H. Morkoç, and S. Iyer, in Gallium Arsenide Technology, vol. 2 ed. by D.K. Ferry (1990), p. 231

    Google Scholar 

  6. H. Morkoç, H. Ünlü, H. Zabel, N. Otsuka, Solid State Technol. 31, 71 (1988)

    Google Scholar 

  7. H. Kroemer, Proc. IRE 45, 1535 (1957)

    Article  Google Scholar 

  8. H. Kroemer, Rev. Mod. Phys. 73, 783 (2000)

    Article  ADS  Google Scholar 

  9. N. Lucas, H. Zabel, H. Morkoç, H. Ünlü, Appl. Phys. Lett. 52, 2117 (1988)

    Article  ADS  Google Scholar 

  10. H. Ünlü, Solid State Electron. 35, 1343 (1992)

    Article  ADS  Google Scholar 

  11. H. Ünlü, Phys. Status Solidi B 216, 107 (1999); B 223, 195 (2001); B 229 581 (2002); B 235, 248 (2003)

    Google Scholar 

  12. O. Madelung (ed), Numerical Data and Functional Relationships in Science and Technology, 17a, Springer, Berlin (1982); ibid 17d, Springer, Berlin (1984)

    Google Scholar 

  13. Vurgaftman, I., Meyer, J.R. ve Ram-Mohan, L.R. (2001), J. Appl. Phys. 89, 5815 (2001)

    Google Scholar 

  14. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (2nd edn), Springer, Berlin (1989)

    Google Scholar 

  15. C. Pryor, J. Kim, L.M. Wang, A.J. Willamson, A. Zunger, J. Appl. Phys. 83, 2548 (1998)

    Article  ADS  Google Scholar 

  16. P. Keating, Phys. Rev. 145, 637 (1966)

    Article  ADS  Google Scholar 

  17. K. Shim, H. Rabitz, Phys. Rev. B 57, 12874 (1998)

    Article  ADS  Google Scholar 

  18. M. Rabah, B. Sahraui, B. Bouhafs, B. Abbar, H. Abid, Phys. Stat. Solidi B 238, 156 (2003)

    Article  ADS  Google Scholar 

  19. H.H. Gürel, Ö. Akıncı, H. Ünlü, Comput. Mater. Sci. 33, 269 (2005)

    Article  Google Scholar 

  20. Ö. Akıncı, H.H. Gürel, H. Ünlü, Thin Solid Films 511–512, 684 (2006)

    Article  ADS  Google Scholar 

  21. H.H. Gürel, Ö. Akıncı, H. Ünlü, Superlattices and Microstructures, 40 (4–6), 588 (2006)

    Google Scholar 

  22. H.H. Gürel, Ö. Akıncı, H. Ünlü, Physica Status Solidi (c) 4(2), 316 (2007)

    Article  ADS  Google Scholar 

  23. Ö. Akıncı, H.H. Gürel, H. Ünlü, Physica Status Solidi (c) 5(2), 478 (2008)

    Article  ADS  Google Scholar 

  24. H.H. Gürel, Ö. Akıncı, H. Ünlü, Thin Solid Films 516, 7098 (2008)

    Article  ADS  Google Scholar 

  25. Ö. Akıncı, H.H. Gürel, H. Ünlü, J. Nanoscience Nanotechnology 8, 540 (2008)

    Article  Google Scholar 

  26. Ö. Akıncı, Ö., H.H. Gürel, H.H. and H. Ünlü, Thin Solid Films, 517, 2431 (2009)

    Google Scholar 

  27. H.H. Gürel, O. Akıncı, H. Ünlü, Superlattices Microstruct. 51, 725 (2012)

    Article  ADS  Google Scholar 

  28. H.H. Gürel, H. Ünlü, Mater. Sci. Semicond. Process. 16, 1619 (2013)

    Article  Google Scholar 

  29. J.L. Martins, A. Zunger, Physical Review B 30, 6217 (1984)

    Article  ADS  Google Scholar 

  30. P. Hohenberg and W. Kohn, Phys. Rev. 136 B, 864 (1964)

    Google Scholar 

  31. J.C. Slater and G. F. Koster (1954), Physical Review, 94, 1498 (1954)

    Google Scholar 

  32. D.J. Chadi, M.L. Cohen, Physica Status Solidi 68, 405 (1975)

    Article  ADS  Google Scholar 

  33. D.J. Chadi, Physical Review B 16, 790 (1977)

    Article  ADS  Google Scholar 

  34. W.A. Harrison, Electronic Structure and the Properties of Solids, Freeman (1980)

    Google Scholar 

  35. D.N. Talwar, C.S. Ting, Physical Review B 25, 2660 (1982)

    Article  ADS  Google Scholar 

  36. J.P. Loehr, Talwar, Phys. Rev. B 55, 4353 (1997)

    Google Scholar 

  37. T.B. Boykin, L.J. Gamble, G. Klimeck, R.C. Bowen, Phys. Rev. B 59, 7301 (1999)

    Article  ADS  Google Scholar 

  38. Y. Fu, K.A. Chao, Phys. Rev. B 43, 4119 (1991)

    Article  ADS  Google Scholar 

  39. A.D. Carlo, Semiconductor Sci. and Tech. 18, R1 (2001)

    Article  Google Scholar 

  40. E.P. OReilly, A. Lindsay, A., S. Tomic, M.K. Saadi, Semicond. Sci. Technol. 17, 870 (2002)

    Google Scholar 

  41. P. Vogl, H.P. Hjalmarson, J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983)

    Google Scholar 

  42. M. Jancu, F. R.Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)

    Google Scholar 

  43. J.M. Jancu, F. Bassani, F. Della Sala, R. Schols, Appl. Phys. Lett. 81, 4838 (2002)

    Article  ADS  Google Scholar 

  44. S. Sapra, N. Shanthi, D.D. Sarma, Phys. Rev. B 66, 205202 (2002)

    Google Scholar 

  45. W. Kohn, J.L. Sham, Phys. Rev. 140A, 1133 (1965)

    Article  ADS  Google Scholar 

  46. V. Fiorentini, A. Baldereschi, Phys. Rev. B 51, 17196 (1995)

    Article  ADS  Google Scholar 

  47. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  48. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmi Ünlü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hakan Gürel, H., Akıncı, Ö., Ünlü, H. (2016). Modelling of Heterostructures for Low Dimensional Devices. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_1

Download citation

Publish with us

Policies and ethics