Advertisement

Nanomaterials Behavior in Corrosion Environments

  • Rostislav A. AndrievskiEmail author
  • Arsen V. Khatchoyan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 230)

Abstract

The main aspects of the materials corrosion are considered taking special attention to some specific material behavior associated with the nanostructure. The NMs properties and behavior in the various corrosion media are generalized including the combined actions and high-temperature oxidation. Attention is paid to the role of size factor in reactions of nanostructures with an environment as well as to the theoretical approaches and modeling by MD methods. Some examples of the NMs exploitation in the corrosive media are given and several poorly understood phenomena are mentioned.

Keywords

Corrosion Resistance Boron Oxide Nanostructured Coating Titanium Diboride Passivation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Koch CC, Ovid’ko IA, Seal S et al (2007) Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Saji VS, Thomas J (2007) Nanomaterials for corrosion control. Curr Sci 92:51–55Google Scholar
  3. 3.
    Raiston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66:0750005 (1–13)Google Scholar
  4. 4.
    Liu L, LI Y, Wang F (2010) Electrochemical corrosion behavior of nanocrystalline materials—a review. J Mater Sci Technol 26:1–14Google Scholar
  5. 5.
    Maurice V, Marcus Ph (2012) Passive films at the nanoscale. Electrochim Acta 84:129–138CrossRefGoogle Scholar
  6. 6.
    Andrievski RA (2013) The role of nanoscale effects in the interaction between nanostructured materials and environments. Prot Metals Phys Chem Surf 49:528–540CrossRefGoogle Scholar
  7. 7.
    Mahesh BV, Singh Raman RK (2014) Role of nanostructure in electrochemical corrosion and high temperature oxidation: a review. Metall Mater Trans A 45:5799–5822CrossRefGoogle Scholar
  8. 8.
    Erb U (2010) Size effects in electroformed nanomaterials. Key Eng Mater 444:163–188CrossRefGoogle Scholar
  9. 9.
    Gupta RK, Singh Raman RK, Koch CC (2010) Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy. J Mater Sci 45:4884–4888CrossRefGoogle Scholar
  10. 10.
    Rashidi AM (2011) Isothermal oxidation kinetics of nanocrystalline and coarse grained nickel: experimental results and theoretical approaches. Surf Coat Technol 205:4117–4123CrossRefGoogle Scholar
  11. 11.
    Gupta RK, Birbilis N, Zhang J (2012) Oxidation resistance of nanocrystalline alloys. In: Shih H (ed) Corrosion Resistance. InTech, Croatia, pp 213–238 (Chapter 10)Google Scholar
  12. 12.
    Manesh BV, Singh Raman RK, Koch CC (2012) Bimodal grain sixe distribution: an effective approach for improving the mechanical properties of Fe–Cr–Ni alloy. J Mater Sci 47:7735–7743CrossRefGoogle Scholar
  13. 13.
    Rotagha R, Langer R, El-Sherik AM et al (1991) The corrosion behavior of nanocrystalline nickel. Scr Metall Mater 25:2867–2872CrossRefGoogle Scholar
  14. 14.
    Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corr Sci 46:3019–3029CrossRefGoogle Scholar
  15. 15.
    Kim SH, Aust KT, Erb U et al (2003) A comparison of the corrosion behavior of polycrystalline and nanocrystalline cobalt. Scr Mater 48:1379–1384CrossRefGoogle Scholar
  16. 16.
    Luo W, Shi P, Wang Ch et al (2012) Electrochemical corrosion behavior of bulk nanocrystalline copper in nitric acid solution. J Electrochem Soc 159:C80–C85CrossRefGoogle Scholar
  17. 17.
    Erb U (2011) Corrosion behavior of electrodeposited nanocrystal. In: Winston R (ed) Uhlig’s corrosion handbook, 3rd edn. John Wiley & Sons, West Sussex, pp 517–528 (Chapter 37)CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Cheng IC, Kassner ME et al (2014) The effect of nanotwins on the corrosion behavior of copper. Acta Mater 67:181–188CrossRefGoogle Scholar
  19. 19.
    Syugaev AV, Lomeva SF, Reshetnikov SM (2010) Electrochemical properties of nanocrystalline α-Fe + Fe3C composites in acid mediums. Prot Metals Phys Chem Surf 46(1):82–88CrossRefGoogle Scholar
  20. 20.
    Afshari V, Dehghanian C (2010) The effect of pure iron in a nanocrystalline grain size on the corrosion inhibitor behavior of sodium benzoate in near-neutral aqueous solution. Mater Chem Phys 124:466–471CrossRefGoogle Scholar
  21. 21.
    Umoren SA, Li Y, Wang FH (2011) Influence of iron microstructure on the performance of polyacrylic acid as corrosion inhibitor in sulfuric acid solution. Corr Sci 53:1778–1785CrossRefGoogle Scholar
  22. 22.
    Wang SG, Sun M, Cheng PC et al (2011) The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solution with different concentration. Mater Chem Phys 127:459–464CrossRefGoogle Scholar
  23. 23.
    Gupta RK, Singh Raman RK, Koch CC (2012) Electrochemical characteristics of nano-and microcrystalline Fe–Cr alloys. J Mater Sci 47:6118–6124CrossRefGoogle Scholar
  24. 24.
    Hoseini M, Shahryari A, Omanovic S et al (2009) Comparative effect of grain size and texture on the corrosion behavior of commercially pure titanium processed by equal channel angular pressing (2009) Corr Sci 51:3064–3067Google Scholar
  25. 25.
    Nie M, Wang ChT, Qu M et al (2014) The corrosion behavior of commercial purity titanium processed by high-pressure torsion. J Mater Sci 49:2824–2831CrossRefGoogle Scholar
  26. 26.
    Amirhanova NA, Valiev RZ, Chernyaeva EYu et al (2010) Corrosion behavior of titanium materials with an ultrafine-grained structure. Russ Metall (Metally) 2010(5):456–460Google Scholar
  27. 27.
    Chuvil’deev VN, Kopylov VI, Bakhmet’ev et al (2012) Effect of the simultaneous enhancement in strength and corrosion resistance of microcrystalline titanium alloys. Doklady Phys 57:10–13Google Scholar
  28. 28.
    Bozhko PV, Korshunov AV, Il’in AP et al (2012) Reactive capacity of submicrocrystalline titanium. II. Electrochemical properties and corrosion resistance in sulphuric acid solutions. Perspective Mater 5:13–20 (in Russian)Google Scholar
  29. 29.
    Korshunov AV, Il’in AP, Lotkov AI et al (2012) Reactive capacity of submicrocrystalline titanium. I. Regularities of oxidation during air heating. Perspective Mater 4:5–12 (in Russian)Google Scholar
  30. 30.
    Mathur Sh, Jain R, Kumar P et al (2012) Effect of nanocrystalline phase on the electrochemical behavior of the alloy Ti60Ni40. J All Comp 538:160–163CrossRefGoogle Scholar
  31. 31.
    Nikulin SA, Rogachev SO, Rozhnov AB et al (2012) Resistance of alloy Zr–2.5 % Nb with ultrafine-grain structure to stress corrosion cracking. Met Sci Heat Treatm 54:407–418CrossRefGoogle Scholar
  32. 32.
    Argade GR, Kumar N, Mishra RS (2013) Stress corrosion cracking susceptibility of ultrafine grained Al–Mg–Sc alloy. Mater Sci Eng, A 565:80–89CrossRefGoogle Scholar
  33. 33.
    Brunner JG, Birbilis N, Ralston KD et al (2012) Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024. Corr Sci 57:209–214CrossRefGoogle Scholar
  34. 34.
    Vrátná J, Hadzima B, Bukovina M et al (2013) Room temperature corrosion properties of AZ31 magnesium alloy processed by extrusion and equal channel angular pressing. J Mater Sci 48:4510–4516CrossRefGoogle Scholar
  35. 35.
    Youssef KhMS, Koch CC, Fedkiw PS (2004) Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corr Sci 46:51–64CrossRefGoogle Scholar
  36. 36.
    Li MCh, Jiang LL, Zhang WQ et al (2007) Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5 % NaCl solutions. J Sol State Electroch 11:1319–1325CrossRefGoogle Scholar
  37. 37.
    Voitovich VB, Lavrenko VA, Adejev VM (1994) High-temperature oxidation of titanium boride of different purity. Oxid Met 42:145–161Google Scholar
  38. 38.
    Andrievski RA, Lavrenko VA, Desmaison J et al (2000) High-temperature oxidation of AlN-base films. Doklady Phys Chem 373:99–101Google Scholar
  39. 39.
    Lavrenko VA, Panasyuk AD, Desmaison-Brut M et al (2005) Kinetics and mechanism of electrochemical corrosion of titanium-based ceramics in 3 % NaCl solution. J Eur Cer Soc 25:1813–1818CrossRefGoogle Scholar
  40. 40.
    Dranenko AC, Lavrenko VA, Talash VN (2010) Corrosion stability of nanostructured TiB2 films in 3 % NaCl solution. Powder Metall Met Cer 49(3–4):74–178Google Scholar
  41. 41.
    Dranenko AC, Lavrenko VA, Talash VN (2013) Corrosion resistance of TiN films in 3 % NaCl solution. Powder Metall Met Cer 52(3–4): 223–227CrossRefGoogle Scholar
  42. 42.
    Pan X, Shen K, Xu J et al (2012) Preparation and corrosion resistance of TiB2 amorhous-crystalline films. Chin J Electr Dev 35:135–138Google Scholar
  43. 43.
    Barkovskaya MM, Uglov VV, Khodasevich VV (2011) Composition and corrosion resistance of coatings on the basis of nitrides of titanium and chromium. J Surf Invest 5:402–409CrossRefGoogle Scholar
  44. 44.
    Her Sh-Ch, Wu Ch-L (2012) Corrosion resistance of TiN coating on 304 steel. Appl Mech Mater 121–126:3779–3783Google Scholar
  45. 45.
    Kuptsov KA, Kiryukhantsev-Korneev PhV, Sheveiko AN et al (2013) Comparative study of electrochemical and impact wear behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN coatings. Surf Coat Techn 216:273–281CrossRefGoogle Scholar
  46. 46.
    Bondarev AV, Kiryukhantsev-Korneev PhV, Sheveiko AN et al (2015) Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings. Appl Surf Sci 327:253–261CrossRefGoogle Scholar
  47. 47.
    Conde A, Navas C, Cristobal AB et al (2006) Characterization of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings. Surf Coat Techn 201:2690–2695CrossRefGoogle Scholar
  48. 48.
    Larijani MM, Elmi M, Yari M et al (2009) Nitrogen effect on corrosion resistance of ion beam sputtered nanocrystalline zirconium nitride films. Surf Coat Techn 203:2591–2594CrossRefGoogle Scholar
  49. 49.
    Escobar C, Villareall M, Caicedo JC et al (2013) Diagnostic of corrosion-erosion evolution for [Hf-Nitrides/V-Nitrides]n structures. Thin Sol Films 545:194–199CrossRefGoogle Scholar
  50. 50.
    Escobar C, Caicedo JC, Aperator W et al (2014) Corrosion resistant surface for vanadium nitride and hafnium nitride layers as a function of grain size. J Phys Chem Sol 75:23–30CrossRefGoogle Scholar
  51. 51.
    Grigoriev ON, Galanov BA, Lavrenko VA et al (2010) Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. J Eur Cer Soc 30:2397–2405CrossRefGoogle Scholar
  52. 52.
    Fahrenholtz WG, Hilmas GE (2012) Oxidation of ultra-high temperature transition metal diboride ceramics. Int Mater Rev 57:61–72CrossRefGoogle Scholar
  53. 53.
    Carney C, Paul A, Venugopal S et al (2014) Qualitative analysis of hafnium diboride based ultra high temperature ceramics under oxyacetylene torch testing at temperatures above 2100 °C. J Eur Cer Soc 34:1045–1051CrossRefGoogle Scholar
  54. 54.
    Gherrab M, Garnier V, Gavarini S et al (2013) Oxidation behavior of nano-scaled and micro-scaled TiC powders. Int J Refr Met Hard Mater 41:590–596CrossRefGoogle Scholar
  55. 55.
    Kurlov AS, Gusev AI (2013) Oxidation of tungsten carbide powders in air. Int J Refr Met Hard Mater 41:300–307CrossRefGoogle Scholar
  56. 56.
    Zhao G, Zhang X, Shen Zh et al (2014) Oxidation of ZrB2 nanoparticles at high temperature under low oxygen pressure. J Am Ceram Soc 97:2360–2363CrossRefGoogle Scholar
  57. 57.
    Musil J (2012) Hard nanocomposites coatings: thermal stability, oxidation resistance and toughness. Surf Coat Techn 207:50–65CrossRefGoogle Scholar
  58. 58.
    Zhang XY, Shi MH, Li C et al (2007) The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Mater Sci Eng, A 448:259–263CrossRefGoogle Scholar
  59. 59.
    Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204CrossRefGoogle Scholar
  60. 60.
    Volonakis G, Tsetseris L, Logothetidis S (2011) Electronic and structural properties of TiB2: bulk, surface, and nanoscale effects. Mater Sci Eng B 176:484–489CrossRefGoogle Scholar
  61. 61.
    Bouzoubaa A, Diawara B, Maurice V et al (2009) Ab initio modeling of localized corrosion: study of the role of surface steps in the interaction of chlorides with passivated nickel surfaces. Corr Sci 51:2174–2182CrossRefGoogle Scholar
  62. 62.
    Cross SR, Woolham R, Shademan S et al (2013) Computational design and optimization of multilayered and functionally graded corrosion coatings. Corr Sci 77:297–307CrossRefGoogle Scholar
  63. 63.
    Gunasegaram DR, Venkatraman MS, Cole IS (2014) Towards multiscale modeling of localized corrosion. Int Mater Rev 59:84–114CrossRefGoogle Scholar
  64. 64.
    Tao K, Zhou X, Cui H et al (2008) Preparation and properties of a nanostructured NiCrC alloy coating for boiler tubes protection. Mater Trans 49:2159–2162CrossRefGoogle Scholar
  65. 65.
    Liu L, Li Y, Wang F (2008) Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim Acta 53:2453–2462CrossRefGoogle Scholar
  66. 66.
    Mercier D, Gauntt BD, Brochu M (2011) Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings. Surf Coat Technol 205:4162–4168CrossRefGoogle Scholar
  67. 67.
    Yu P, Wang W, Wang F et al (2011) High-temperature corrosion behavior of sputtered K38 nanocrystalline coatings with and without yttrium addition in molten sulfate at 900 °C. Surf Coat Technol 206:68–74CrossRefGoogle Scholar
  68. 68.
    Verdon C, Szwedek O, Jacques S et al (2013) Hafnium and silicon carbide multilayer coatings for the protection of carbon composites. Surf Coat Technol 230:124–129CrossRefGoogle Scholar
  69. 69.
    Yaghtin AH, Javadpour S, Shariat MH (2014) Hot corrosion of nanostructured CoNiCrAlYSi coatings deposited by high velocity oxy fuel process. J All Comp 584:303–307CrossRefGoogle Scholar
  70. 70.
    Yang M, Allen AJ, Nguyen MT et al (2013) Corrosion behavior of mesoporous transition metal nitrides. J Sol St Chem 205:49–56CrossRefGoogle Scholar
  71. 71.
    Kolobov YuR (2010) Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings. Nanotechnol Russ 4:758–775CrossRefGoogle Scholar
  72. 72.
    Shtansky DV, Levashov EA (2013) Recent progress in the field of multicomponent bioactive nanostructured films. RCS Adv 3:11107–11115Google Scholar
  73. 73.
    Mishnaevsky L Jr, Levashov E, Valiev RZ et al (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R 81:1–19CrossRefGoogle Scholar
  74. 74.
    Lyakhov NZ (ed) (2014) Biocomposites on base of calcium-phosphate coatings, nanostructural and ultra-fined grained bioinert metals, their biocompatibility and biodegrdation. Publ House Tomsk St Univ, Tomsk (in Russian)Google Scholar
  75. 75.
    Gleiter H, Schimmel Th, Han H (2014) Nanostructured solids – from nano-glasses to quantum transistors. Nano Today 9:17–66CrossRefGoogle Scholar
  76. 76.
    Sharma MM, Tomedi JD, Weigley TJ (2014) Slow strain rate testing and stress corrosion cracking of ultra-fine grained and conventional Al–Mg. Mater Sci Eng A 619:35–45CrossRefGoogle Scholar
  77. 77.
    Silverstroni L, Meriggi G, Sciti D (2014) Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corr Sci 83:281–291CrossRefGoogle Scholar
  78. 78.
    Abdulstaar M, Mhaede M, Wollmann M et al (2014) Investigating the effect of bulk and surface severe plastic deformation on the fatigue, corrosion behavior and corrosion fatigue of AA5083. Surf Coat Technol 254:244–251CrossRefGoogle Scholar
  79. 79.
    Ali F, Mehmood M, Gasim AM et al (2014) Comparative study of the structure and corrosion behavior of Zr–20 %Cr and Zr–20 %Ti alloy films deposited by multi-arc ion plating technique. Thin Sol Films 564:277–281CrossRefGoogle Scholar
  80. 80.
    Królikowski A (2015) Corrosion behavior of amorphous and nanocrystalline alloys. Solid State Phenom 227:11–14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rostislav A. Andrievski
    • 1
    Email author
  • Arsen V. Khatchoyan
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Structural MacrokineticsRussian Academy of SciencesChernogolovka, Moscow AreaRussia

Personalised recommendations