Mechanical Actions Effect upon Nanomaterials

  • Rostislav A. AndrievskiEmail author
  • Arsen V. Khatchoyan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 230)


The main SPD methods for microstructure refinement and their influence on the on the nanostructure formation are briefly considered. The data on cyclic and other loadings (including a combined action) on the structure, phase transitions and properties of NMs are also analyzed. Some theoretical approaches and the MD simulation method possibilities are described. The importance of nanotwinned gradient surface structures in increasing mechanical properties is underlined. Examples of the mechanical action practical applications are given. A special attention is paid to the poorly studied problems in the field.


Fatigue Strength Equal Channel Angular Pressing Accumulative Roll Bonding Surface Microhardness Laser Shock Peening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a weal of challenging science. Acta Mater 61:782–817CrossRefGoogle Scholar
  2. 2.
    Liu XC, Zhang HW, Lu K (2013) Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342:337–342CrossRefGoogle Scholar
  3. 3.
    Wang Q, Yin Y, Sun Q et al (2014) Gradient nano microstructure and its formation in pure titanium produced by surface rolling treatment. J Mater Res 29:569–577CrossRefGoogle Scholar
  4. 4.
    Semenova IP, Salimgareeva GKh, Latysh VV et al (2009) Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation. Mater Sci Eng A 503:92–95CrossRefGoogle Scholar
  5. 5.
    Moskalenko VA, Betekhtin VI, Kardashev BK et al (2014) Mechanical properties and structural features of nanocrystalline titanium produced cryorolling. Phys Sol State 56:1590–1596CrossRefGoogle Scholar
  6. 6.
    Betekhtin VI, Kolobov YuR, Sklenicka V et al (2015) Defect structure effect on static and prolonged strength of submicrocrystalline Ti (BT1–0) produced by plastic deformation at screw and sizing lengthwise rolling. Techn Phys 60:66–71CrossRefGoogle Scholar
  7. 7.
    Liu XC, Zhang HW, Lu K (2015) Formation of nanolaminated structure in an interstitial-free steel. Scr Mater 95:54–57CrossRefGoogle Scholar
  8. 8.
    Andrievski RA, Glezer AM (2009) Strength of nanostructures. Phys-Usp 52:315–334CrossRefGoogle Scholar
  9. 9.
    Koch CC, Ovid’ko IA, Seal S et al (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Armstrong RW (2013) Hall-Petch analysis of dislocation pileups in thin material layers and in nanocrystals. J Mater Res 28:1793–1798CrossRefGoogle Scholar
  11. 11.
    Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–352CrossRefGoogle Scholar
  12. 12.
    Morozov NF, Ovid’ko IA, Skiba NV (2014) Plastic flow through widening of nanoscale twins in ultra-grained metallic materials with nanotwinned structures. Rev Adv Mater Sci 37:29–36Google Scholar
  13. 13.
    Beyerlein IJ, Mayeur JR, Zheng S et al (2014) Emergence of stable interfaces under extreme plastic deformation. Proc NAS 111:4386–4390CrossRefGoogle Scholar
  14. 14.
    Tian Y, Xu B, Yu D et al (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493:385–388CrossRefGoogle Scholar
  15. 15.
    Huang Q, Yu D, Xu B et al (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253CrossRefGoogle Scholar
  16. 16.
    Valiev RZ, Zhilyaev AP, Langdon TG (2014) Bulk nanostructured materials: fundamentals and applications. Wiley, WeinheimGoogle Scholar
  17. 17.
    Estrin Y, Vinogradov A (2010) Fatigue of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int J Fatig 32:898–907CrossRefGoogle Scholar
  18. 18.
    Li RH, Zhang ZJ, Zhang P et al (2013) Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading. Acta Mater 61:2857–2868Google Scholar
  19. 19.
    Dobatkin SV, Terent’ev VF, Skrotzki W et al (2012) Structure and fatigue properties of 08Kh18N10T steel after equal-channel angular pressing and heating. Russ Metall (Metally) 11:954–962Google Scholar
  20. 20.
    Zhang P, Zhang ZJ, Li LL et al (2012) Twin boundary: stronger or weaker interface to resist fatigue cracking? Scr Mater 66:854–859CrossRefGoogle Scholar
  21. 21.
    Zhang GP, Sun KH, Zhang B et al (2008) Tensile and fatigue strength of ultrathin copper films. Mater Sci Eng A 483–484:387–390CrossRefGoogle Scholar
  22. 22.
    Ensslen Ch, Kraft O, Mönig R et al (2014) Mechanical annealing of Cu–Si nanowires during high-cycle fatigue. MRS Commun 4:83–87Google Scholar
  23. 23.
    Dai CY, Zhang B, Xu J et al (2013) On size effects on fatigue properties of metal foils at micrometer scales. Mater Sci Eng A 575:217–222CrossRefGoogle Scholar
  24. 24.
    Naimark OB, Plekhov OA, Betekhtin VI et al (2014) The defect accumulation kinetics and duality of Wellers’ curve in gigacycle fatigue of metals. Techn Phys 59:398–401CrossRefGoogle Scholar
  25. 25.
    Lukáš P, Kunz L, Navrátilová L et al (2011) Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region. Mater Sci Eng A 528:7036–7040CrossRefGoogle Scholar
  26. 26.
    Choi I-Ch, Yoo B-G, Kraft O et al (2014) High-cycle fatigue behavior of Zn-22 %Al alloy processed by high-pressure torsion. Mater Eng Sci A 618:37–40CrossRefGoogle Scholar
  27. 27.
    Glezer AM, Blinova EN, Poznyakov VA et al (2003) Martensite transformation in nanoparticles and nanomaterials. J Nanopart Res 5:551–560CrossRefGoogle Scholar
  28. 28.
    Clark SM, Prilliman SG, Erdonmez CK et al (2005) Size dependence of the pressure-induced γ to α structural phase transition in iron oxide nanocrystals. Nanotechnogy 16:2813–2818CrossRefGoogle Scholar
  29. 29.
    Edalati K, Daio T, Arita M et al (2014) High-pressure torsion of titanium at cryogenic and room temperatures: grain size effect on allotropic phase transformation. Acta Mater 68:207–213CrossRefGoogle Scholar
  30. 30.
    Straumal BB, Mazilkin AA, Protasova SG et al (2012) Ferromagnetism of nanostructured zinc oxide films. Phys Met Metallogr 113:1244–1256CrossRefGoogle Scholar
  31. 31.
    Straumal BB, Dobatkin SV, Rodin AO et al (2011) Structure and properties of nanograined Fe–C alloys after severe plastic deformation. Adv Eng Mater 13:463–469CrossRefGoogle Scholar
  32. 32.
    Straumal BB, Sauvage X, Baretzky B et al (2014) Grain boundary films in Al–Zn alloys after high pressure torsion. Scr Mater 70:59–62CrossRefGoogle Scholar
  33. 33.
    Raabe D, Choi P-P, Li Y et al (2010) Metallic composites processed via extreme deformation: toward the limits of strength in bulk materials. MRS Bull 35:982–991CrossRefGoogle Scholar
  34. 34.
    Sundeev RV, Glezer AM, Shalimova AV (2014) Structural and phase transitions in the amorphous and nanocrystalline Ti50Ni25Cu25 alloys upon high-pressure torsion. Mater Lett 133:32–34CrossRefGoogle Scholar
  35. 35.
    Glezer AM, Metlov LS (2010) Physics of megaplastic (severe) deformation in solids. Phys Sol State 52:1162–1169CrossRefGoogle Scholar
  36. 36.
    Molodets AM, Golyshev AA, Shul’ga YuM (2013) Polymorphic transformations in nanostructured anatase (TiO2) under high-pressure shock compression. Tech Phys 58: 1029–1033Google Scholar
  37. 37.
    Swamy V, Kuznetsov A, Dubrovinsky LS et al (2006) Size-dependent pressure-induced amorphization in nanoscale TiO2. Phys Rev Lett 95:135702 (1–4)Google Scholar
  38. 38.
    Singh M, Kao M (2013) Study of nanomaterials under high pressure. Adv Nanopart 2:350–357CrossRefGoogle Scholar
  39. 39.
    Glezer AM, Varjukhin VN, Tomchuk AA et al (2014) Basic patterns of the generation of high-angle grain boundaries and the physical/mechanical properties of Fe–Ni alloys upon severe plastic deformation. Bull Russ Acad Sci Phys 78:1022–1025CrossRefGoogle Scholar
  40. 40.
    Han SZ, Goto M. Ahn J-H et al (2014) Grain growth in ultrafine grain sized copper during cyclic deformation. J All Comp 615:5587–5589Google Scholar
  41. 41.
    Andrievski RA (2009) Brittle nanomaterials: superhardness and superplasticity. Bull Russ Acad Sci Phys 73:1222–1226CrossRefGoogle Scholar
  42. 42.
    Andrievski RA, Kalinnikov GV, Shtansky DV (2000) High-resolution transmission and scanning electron microscopy of nanostructured boride/nitride films. Phys Sol State 42:760–766CrossRefGoogle Scholar
  43. 43.
    Schuster B (2011) Oxide ceramics under extreme pressure and radiation conditions. Dr. Dissertation in the Darmstadt Technical University, 2011Google Scholar
  44. 44.
    Schuster B, Fujara F, Merk B et al (2012) Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure. Nucl Instr Meth Phys Res B 277:45–52CrossRefGoogle Scholar
  45. 45.
    Fox-Rabinovich GS, Endrino JL, Aguirre MH et al (2012) Mechanism of adaptability for the nano-structured TiAlDrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions. J Appl Phys 111:064306 (1–12)Google Scholar
  46. 46.
    Wang YX, Zhang S (2014) Toward hard yet tough ceramic coatings. Surf Coat Techn 258:1–16CrossRefGoogle Scholar
  47. 47.
    Misra A, Thilly L (2010) Structural metals at extremes. MRS Bull 35:965–972Google Scholar
  48. 48.
    Dubois J-B, Thilly L, Renault P-O et al (2012) Cu–Nb nanocomposites wires processed by severe plastic deformation: effects of multi-scale microstructure and internal stresses on elastic-plastic properties. Adv Eng Mater 14:998–1003CrossRefGoogle Scholar
  49. 49.
    San-Miguel A (2006) Nanomaterials under high-pressure. Chem Soc Rev 35:876–889CrossRefGoogle Scholar
  50. 50.
    Gutkin MYu, Mikaelyan KN, Ovid’ko IA (2008) Grain growth and collective migration of grain boundaries plastic deformation of nanocrystalline materials. Phys Sol State 50:1266–1279Google Scholar
  51. 51.
    Ovid’ko IA, Sheinerman AG (2012) Nanoscale cracks at deformation twins stopped by grain boundaries in bulk and thin-film materials with nanocrystalline and ultra-grained structures. J Phys D Appl Phys 47:015307 (1–10)Google Scholar
  52. 52.
    Ovid’ko IA, Sheinerman AG, Valiev RZ (2014) Mg segregations at and near deformation-distorted grain boundaries in ultrafine-grained Al–Mg alloys. J Mater Sci 49:6682–6688Google Scholar
  53. 53.
    Chowdhury PB, Sehitoglu H, Raiteick RG et al (2013) Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater 61:2531–2547CrossRefGoogle Scholar
  54. 54.
    Yuan F, Wu X (2012) Shock response of nanotwinned copper from large-scale molecular dynamic simulations. Phys Rev B 86:134108 (1–10)Google Scholar
  55. 55.
    Yuan F, Wu X (2014) Hydrostatic pressure effects on deformation mechanisms of nanocrystalline FCC metals. Comp Mater Sci 85:8–15CrossRefGoogle Scholar
  56. 56.
    Levitas VI, Javanbakht M (2014) Phase transformations in nanograins materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRefGoogle Scholar
  57. 57.
    Feng B, Levitas VI, Ma Y (2014) Strain-induced phase transformation under compression in a diamond anvil cell: simulation of a sample and gasket. J Appl Phys 115:163509 (1–14)Google Scholar
  58. 58.
    Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059CrossRefGoogle Scholar
  59. 59.
    Mathaudhu SN, Estrin Y, Horita Z et al (2014) Preface to the special issue onultrafine-grained materials. J Mater Sci 49:6485–6486CrossRefGoogle Scholar
  60. 60.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Progress Mater Sci 45:103–189CrossRefGoogle Scholar
  61. 61.
    Ivanov MB, Kolobov YuR, Golosov EV et al (2011) Mechanical properties of mass-produced nanostructured titanium. Nanotechnol Russ 6:370–378CrossRefGoogle Scholar
  62. 62.
    Mishnaevsky L Jr, Levashov E, Valiev RZ et al (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R 81:1–19CrossRefGoogle Scholar
  63. 63.
    Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30:1398–1408CrossRefGoogle Scholar
  64. 64.
    Darling KA, Tschopp MA, Roberts AJ et al (2013) Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures. Scr Mater 69:461–464CrossRefGoogle Scholar
  65. 65.
    Valiev RZ, Murashkin MYu, Sabirov I et al (2014) A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr Mater 76:13–16CrossRefGoogle Scholar
  66. 66.
    Islamgaliev RK, Nesterov KM, Bourgon J et al (2014) Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J Appl Phys 115:194301 (1–4)Google Scholar
  67. 67.
    Kawasaki M, Langdon TG (2014) Review: achieving superplasticity in metals processed by high-pressure torsion. J Mater Sci 49:6487–6496CrossRefGoogle Scholar
  68. 68.
    Bouaziz O, Kim HS, Estrin Y (2013) Architecturing of metal-based composites with concurrent nanostructuring: a new paradigm of material design. Adv Eng Mater 15:336–340CrossRefGoogle Scholar
  69. 69.
    Lee J-H, Veysset D, Singer JP et al (2012) High strain rate deformation of layered nanocomposites. Nature Comm 3:1164 (1–7)Google Scholar
  70. 70.
    De Hosson JThM, Ocelic V, De Oliveira UOB et al (2009) Fundamental and applied aspects of laser surface engineering. Int J Mater Res 100:1343–1360CrossRefGoogle Scholar
  71. 71.
    Makarov GN (2013) Laser application in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Phys-Usp 56:643–682CrossRefGoogle Scholar
  72. 72.
    Zhang K, Dai J, Wu W et al (2015) Development of a high magnetic field assisted pulsed laser deposition system, Rev Sci Instr 86:095105Google Scholar
  73. 73.
    Khomich VYu, Shmakov VA (2015) Mechanisms and models of direct laser nanostructuring of materials. Phys-Usp 58(5). doi: 10.3367/UFNr.0185.201505c.0489
  74. 74.
    Kolobov YR, Smolyakova MY, Kolobova AY et al (2014) Superhydrophylic textures fabricated by femtosecond laser pulses on sub-micro- and nano-crystalline titanium surfaces. Laser Phys Lett 11:125602Google Scholar
  75. 75.
    Yang L, Tao NR, Lu K et al (2013) Enhanced fatigue resistance of Cu with gradient nanograined surface layer. Scr Mater 68:801–804CrossRefGoogle Scholar
  76. 76.
    Ye Ch, Liao Y, Suslov S et al (2014) Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Mater Sci Eng A 609:195–203CrossRefGoogle Scholar
  77. 77.
    Ye Ch, Talang A, Gill AS et al (2014) Gradient nanostructure and residual stresses induced by ultrasonic nanocrystal surface modification in 303 austenitic stainless steel for high strength and high ductility. Mater Sci Eng A 613:274–288CrossRefGoogle Scholar
  78. 78.
    Huang HW, Wang ZB, Lu J et al (2015) Fatigue behaviors of AISI 316L stainless steel with gradient nanostructured layer. Acta Mater 87:150–160CrossRefGoogle Scholar
  79. 79.
    XC Liu, Zhang HW, Lu K (2015) Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater 96:24–36CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rostislav A. Andrievski
    • 1
    Email author
  • Arsen V. Khatchoyan
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Structural MacrokineticsRussian Academy of SciencesChernogolovka, Moscow AreaRussia

Personalised recommendations